Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

Abstract

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening. Accurately zoning the early and late ripening areas, particularly in a context of climate change, will allow the winegrower to adapt his plant material and viticultural techniques to the specifications of his terroir. The general models of circulation used by meteorologists are not precise enough to study the spatial distribution of temperatures at a fine scale. A network of 90 temperature sensors was established in the Saint-Emilion wine area to study this parameter at a local scale. The initial results show high variability of temperatures in this area especially for minimum temperatures, and also of bioclimatic indices. The ensuing differences in terms of precocity vary from around fifty days for veraison and more for maturity. 

DOI:

Publication date: August 10, 2020

Issue: Terroir 2014

Type: Article

Authors

Laure de RESSÉGUIER (1), Hervé QUÉNOL (2), Jean-Philippe ROBY (1) and Cornelis van LEEUWEN (1)

(1) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon 
(2) Laboratoire COSTEL, UMR 6554 LETG du CNRS, Université Rennes 2-Haute Bretagne, Rennes

Contact the author

Keywords

Terroir, Climate, Temperature variability, Saint-Emilion area

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Parcours de découverte des terroirs viticoles

A partir des recherches conduites sur la caractérisation des terroirs viticoles par des chercheurs de l’Unité de Recherches Vigne et Vin (1, 2, 3, 4, 5) du Centre INRA d’Angers, Terre des Sciences, le Centre de Culture Scientifique et Technique d’Angers (CCSTA) a mis au point un parcours de découverte d’une journée dans le vignoble angevin avec une approche pluridisciplinaire.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Estimating grapevine crop coefficients at high-resolution using open-source satellite data

Climate change results in increasing water stress due to co-effects of rising evapotranspiration (ET) and decreased precipitation over the past 65 years (Spinoni et al. 2019).