Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

Abstract

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening. Accurately zoning the early and late ripening areas, particularly in a context of climate change, will allow the winegrower to adapt his plant material and viticultural techniques to the specifications of his terroir. The general models of circulation used by meteorologists are not precise enough to study the spatial distribution of temperatures at a fine scale. A network of 90 temperature sensors was established in the Saint-Emilion wine area to study this parameter at a local scale. The initial results show high variability of temperatures in this area especially for minimum temperatures, and also of bioclimatic indices. The ensuing differences in terms of precocity vary from around fifty days for veraison and more for maturity. 

DOI:

Publication date: August 10, 2020

Issue: Terroir 2014

Type: Article

Authors

Laure de RESSÉGUIER (1), Hervé QUÉNOL (2), Jean-Philippe ROBY (1) and Cornelis van LEEUWEN (1)

(1) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon 
(2) Laboratoire COSTEL, UMR 6554 LETG du CNRS, Université Rennes 2-Haute Bretagne, Rennes

Contact the author

Keywords

Terroir, Climate, Temperature variability, Saint-Emilion area

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Behaviour of two training systems for mechanical pruning combined with different nitrogen fertilizations on cv. Colombard

Today winegrowers involved in mechanical winter pruning are applying this viticultural technique on two main training systems, the free cordon, appearing to be the more efficient, and the trellised vertical shoot positioning (VSP) system. The main reasons for maintaining the trellis are generally due to common habits in vineyard management, risk of wind damage for the shoots, or risk of decrease in photosynthesis potential. The aim of the study was to assess the effects of the two training systems on vine. In addition, different nitrogen fertilization levels were applied on the two systems to evaluate the best combination to achieve yield and grape quality.

The importance of the physicochemical composition of wine on the score awarded in an official contest

The quality of wine is difficult to define. This is most certainly accredited to everyone´s different perception of quality. Some of the indicators of high-quality wines are color complexity and balance. Color is one of the most crucial attributes of quality, not only for the obvious implications for their perception but also because they are indicators of other aspects related to its aroma and taste.

Underpinning terroir with data: rethinking the zoning paradigm

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used. Likewise, the chemical and sensory analysis of wines draws on multivariate statistics; the efficient winery intake of grapes, subsequent production of wines and their delivery to markets relies on logistics; whilst the sales and marketing of wines is increasingly driven by artificial intelligence linked to the recorded purchasing behaviour of consumers. In brief, there is data everywhere!

Opinions will vary on whether these developments are a good thing. Those concerned with the ‘mystique’ of wine, or the historical aspects of terroir and its preservation, may find them confronting. In contrast, they offer an opportunity to those interested in the biophysical elements of terroir, and efforts aimed at better understanding how these impact on vineyard performance and the sensory attributes of resultant wines. At the previous Terroir Congress, we demonstrated the potential of analytical methods used at the within-vineyard scale in the development of Precision Viticulture, in contributing to a quantitative understanding of regional terroir. For this conference, we take this approach forward with examples from contrasting locations in both the northern and southern hemispheres. We show how, by focussing on the vineyards within winegrowing regions, as opposed to all of the land within those regions, we might move towards a more robust terroir zoning than one derived from a mixture of history, thematic mapping, heuristics and the whims of marketers. Aside from providing improved understanding by underpinning terroir with data, such methods should also promote improved management of the entire wine value chain.

Terroir and precision viticulture: are they compatible?

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale.