Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

Abstract

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening. Accurately zoning the early and late ripening areas, particularly in a context of climate change, will allow the winegrower to adapt his plant material and viticultural techniques to the specifications of his terroir. The general models of circulation used by meteorologists are not precise enough to study the spatial distribution of temperatures at a fine scale. A network of 90 temperature sensors was established in the Saint-Emilion wine area to study this parameter at a local scale. The initial results show high variability of temperatures in this area especially for minimum temperatures, and also of bioclimatic indices. The ensuing differences in terms of precocity vary from around fifty days for veraison and more for maturity. 

DOI:

Publication date: August 10, 2020

Issue: Terroir 2014

Type: Article

Authors

Laure de RESSÉGUIER (1), Hervé QUÉNOL (2), Jean-Philippe ROBY (1) and Cornelis van LEEUWEN (1)

(1) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon 
(2) Laboratoire COSTEL, UMR 6554 LETG du CNRS, Université Rennes 2-Haute Bretagne, Rennes

Contact the author

Keywords

Terroir, Climate, Temperature variability, Saint-Emilion area

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Environment friendly nutrition supplying and soil cultivation methods applicable in the upper zone of hillside vineyards

Somló is Hungary’s smallest wine district, however one of the best producing white wines. The majority of vineyard areas are located on the slopes of Somló-hill, situated at the point where the Kisalföld meets Bakonyalja

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.

Simulating climate change impact on viticultural systems in historical and emergent vineyards

Global climate change affects regional climates and hold implications for wine growing regions worldwide. Although winegrowers are constantly adapting to internal and external factors, it seems relevant to develop tools, which will allow them to better define actual and future agro-climatic potentials. Within this context, we develop a modelling approach, able to simulate the impact of environmental conditions and constraints on vine behaviour and to highlight potential adaptation strategies according to different climate change scenarios. Our modeling approach, named SEVE (Simulating Environmental impacts on Viticultural Ecosystems), provides a generic modeling framework for simulating grapevine growth and berry ripening under different conditions and constraints (slope, aspect, soil type, climate variability…) as well as production strategies and adaptation rules according to climate change scenarios. Each activity is represented by an autonomous agent able to react and adapt its reaction to the variability of environmental constraints. Using this model, we have recently analyzed the evolution of vineyards’ exposure to climatic risks (frost, pathogen risk, heat wave) and the adaptation strategies potentially implemented by the winegrowers. This approach, implemented for two climate change scenarios, has been initiated in France on traditional (Loire Valley) and emerging (Brittany) vineyards. The objective is to identify the time horizons of adaptations and new opportunities in these two regions. Carried out in collaboration with wine growers, this approach aims to better understand the variability of climate change impacts at local scale in the medium and long term.

PROFILING OF LIPIDS IN WINES FROM MONOCULTURE FERMENTATION WITH INDIGENOUS METSCHNIKOWIA YEAST SPECIES

Lipids are a diverse group of organic compounds essential for living systems. They are vital compounds for yeast which makes them an important modulator of yeast metabolism in alcoholic fermentation. This study presents a comprehensive lipidome analysis of wine samples from the Vitis vinifera L., Maraština. The fermentation trails were set up in monoculture with different indigenous yeast strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes: Metschnikowia pulcherrima, Metshnikowia sinensis/shanxiensis , and Metschnikowia chyrsoperlae.

A Viticultural Terroir in Brazil: Change and continuity

The viticultural terroir at the Serra Gaúcha region, in Rio Grande do Sul State, Brazil, is analyzed under historical and sociological viewpoints, aiming to understand the origin of its characteristics, and the risks for its continuity.