Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Abstract

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate. The research involves application of advanced local and regional scale weather and climate models, and their integration with grapevine phenological and crop models. The key aims are to improve adaptation of grape varieties to fine scale spatial variations of climate, and reduce the impact of climate variation and risk factors such as frost, cool spells and high temperatures. Improved optimization of wine-grape production through better knowledge of climate at high resolution within vineyard regions will contribute to the future sustainability of high quality wine production. An enhanced network of automatic weather stations (AWS) has been installed in New Zealand’s premier vineyard region (Marlborough) and the Weather Research and Forecasting (WRF) model has been set up to run twice daily at 1 km resolution through the growing season. Model performance has been assessed using AWS data and the model output is being used to derive high-resolution maps and graphs of bioclimatic indices for the vineyard region. Initial assessment of model performance suggested that WRF had a cold bias, but this was found to be due to errors in the default surface characteristics. Spatial patterns of predicted air temperature and bioclimatic indices appear to accurately represent the significant spatial variability caused by the complex terrain of the Marlborough region. An automated web page is being developed to provide wine-producers with daily up-dates of observed and modelled information for the vineyard region. Latest results of this research will be provided along with a review of the 2013-14 growing season, using data from both the climate station network and WRF model output. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew STURMAN (1), Tobias SCHULMANN (1), Iman SOLTANZADEH (1), Eila GENDIG (1), Peyman ZAWAR-REZA (1), Marwan KATURJI (1), Amber PARKER (3), Michael TROUGHT (2), Robert AGNEW (2) 

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand 
(2) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand 
(3) New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand 

Contact the author

Keywords

climate variability, viticulture, meteorological network, high-resolution climate modelling, Marlborough, New Zealand

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Aromatic profile evolution of corvina, corvinone and rondinella grapes during withering

AIM AND METHODS: Grape withering is one of the key steps in the production of the most renowned red wines of the Valpolicella area, namely Amarone and Recioto. This practice, which was already used since Roman times, entails important modifications in grape composition and in the chemical and sensorial characteristics of the corresponding wines, especially in terms of aromatic profile. The aim of this research is evaluating the aromatic evolution during grape withering of the three main varieties used in Valpolicella wines: Corvina, Corvinone and Rondinella.Samples of the three varieties were analyzed at harvest and at different stages of withering, namely10%, 20% and 30% of weight loss. Free and glycosidically bound compounds were extracted and analyzed using Gas Chromatography- Mass Spectrometry (GC-MS). RESULTS: For all the samples the data were normalized to eliminate the effect of concentration due to grape dehydration. Terpene content and evolution varied considerably in relationship to grape variety. Corvinone was richer in cyclic terpenes (including phellandrene, limonene, and cymene) and they decreased during withering.

Une procédure de mise à jour des zones AOC

In France, one of INAO missions is to delimit the production area of the « Appellations d’origine contrôlées » (AOC). For wine AOC, the delimitation of plots allows for identifying plots of land that respond to technical criteria of the vine location, criteria adapted in every appellation. Some old delimitations AOC are not in adequacy with their territory. Indeed, in spite the existence of a politic aiming to protect production areas AOC, urbanization, road infrastructure or quarries occupy surfaces classified in AOC today.

Changes in wine secondary metabolites composition by the timing of inoculation with lactic acid bacteria: impact on wine aroma

For the first time, it was established that the timing of inoculation with LAB could significantly impact the concentration of many secondary metabolites leading to significant aromatic changes. From studied compounds, the most influenced were esters and diacetyl.

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.