Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Abstract

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate. The research involves application of advanced local and regional scale weather and climate models, and their integration with grapevine phenological and crop models. The key aims are to improve adaptation of grape varieties to fine scale spatial variations of climate, and reduce the impact of climate variation and risk factors such as frost, cool spells and high temperatures. Improved optimization of wine-grape production through better knowledge of climate at high resolution within vineyard regions will contribute to the future sustainability of high quality wine production. An enhanced network of automatic weather stations (AWS) has been installed in New Zealand’s premier vineyard region (Marlborough) and the Weather Research and Forecasting (WRF) model has been set up to run twice daily at 1 km resolution through the growing season. Model performance has been assessed using AWS data and the model output is being used to derive high-resolution maps and graphs of bioclimatic indices for the vineyard region. Initial assessment of model performance suggested that WRF had a cold bias, but this was found to be due to errors in the default surface characteristics. Spatial patterns of predicted air temperature and bioclimatic indices appear to accurately represent the significant spatial variability caused by the complex terrain of the Marlborough region. An automated web page is being developed to provide wine-producers with daily up-dates of observed and modelled information for the vineyard region. Latest results of this research will be provided along with a review of the 2013-14 growing season, using data from both the climate station network and WRF model output. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew STURMAN (1), Tobias SCHULMANN (1), Iman SOLTANZADEH (1), Eila GENDIG (1), Peyman ZAWAR-REZA (1), Marwan KATURJI (1), Amber PARKER (3), Michael TROUGHT (2), Robert AGNEW (2) 

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand 
(2) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand 
(3) New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand 

Contact the author

Keywords

climate variability, viticulture, meteorological network, high-resolution climate modelling, Marlborough, New Zealand

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Classification of “Valpolicella Superiore” wines in relation to aromatic composition: influence of geographical origin, vintage and aging

The Valpolicella appellation, mainly known for Amarone and Ripasso, is experiencing growing interest in Valpolicella Superiore (VS), a lighter red wine aligning with consumer demand. However, anecdotal evidence suggests different stylistic interpretations of VS, potentially causing consumer confusion.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

Correlations between N,S,O-heterocycle levels and age of Champagne base wines

Champagne regulation allows winegrowers to stock small amounts of still wines in order to compensate vintages’ quality shifts mainly due to climate variations. According to their technical requirements and house style some Champagne producers (commonly named “Champagne houses”) use these stored wines in the blend in order to introduce an element of complexity. These wines possess the particularity of being aged on fine lees in thermo-regulated stainless steel tanks. The Champagne house of Veuve Clicquot Ponsardin has several wines stored this way.

Reconfiguring wine prescription : from traditional critics to digital social networks

The integration of digital social networks (DSN) has profoundly transformed communication practices within the wine industry, reorganizing the dynamics of prescription and marketing.