Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Abstract

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate. The research involves application of advanced local and regional scale weather and climate models, and their integration with grapevine phenological and crop models. The key aims are to improve adaptation of grape varieties to fine scale spatial variations of climate, and reduce the impact of climate variation and risk factors such as frost, cool spells and high temperatures. Improved optimization of wine-grape production through better knowledge of climate at high resolution within vineyard regions will contribute to the future sustainability of high quality wine production. An enhanced network of automatic weather stations (AWS) has been installed in New Zealand’s premier vineyard region (Marlborough) and the Weather Research and Forecasting (WRF) model has been set up to run twice daily at 1 km resolution through the growing season. Model performance has been assessed using AWS data and the model output is being used to derive high-resolution maps and graphs of bioclimatic indices for the vineyard region. Initial assessment of model performance suggested that WRF had a cold bias, but this was found to be due to errors in the default surface characteristics. Spatial patterns of predicted air temperature and bioclimatic indices appear to accurately represent the significant spatial variability caused by the complex terrain of the Marlborough region. An automated web page is being developed to provide wine-producers with daily up-dates of observed and modelled information for the vineyard region. Latest results of this research will be provided along with a review of the 2013-14 growing season, using data from both the climate station network and WRF model output. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew STURMAN (1), Tobias SCHULMANN (1), Iman SOLTANZADEH (1), Eila GENDIG (1), Peyman ZAWAR-REZA (1), Marwan KATURJI (1), Amber PARKER (3), Michael TROUGHT (2), Robert AGNEW (2) 

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand 
(2) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand 
(3) New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand 

Contact the author

Keywords

climate variability, viticulture, meteorological network, high-resolution climate modelling, Marlborough, New Zealand

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Unveiling the viticultural heritage of Rachaya, Lebanon: genetic, ampelographic and chemical profiling of local grape varieties

Located in the western bekaa region of lebanon, rachaya is known for its extensive history of viticulture and ideal mediterranean conditions for grapevine cultivation. Despite the area’s importance in grapevine production, there is limited knowledge about the local grape varieties grown there. In this work, we conducted a detailed analysis of five local grapevine varieties in the area, obeidy, kassoufi, foddeh, aswadi, and maryami, of which little is currently known, in comparison to a set of international varieties.

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Aromatic characterization of Moscato Giallo by GC-MS/MS and stable isotopic ratio analysis of the major volatile compounds

Among the Moscato grapes, Moscato Giallo is a winegrape variety characterized by a high content of free and glycosylated monoterpenoids, which gives very aromatic wines. The aromatic bouquet of Moscato Giallo is strongly influenced by the high concentration of linalool, geraniol, linalool oxides, limonene, α-terpineol, citronellol, HO-trienol, HO-diols, 8-Hydroxylinalool, geranic acid and β-myrcene, that give citrus, rose, and peach notes.

Oak wood seasoning: impact on oak wood chemical composition and sensory quality of wine

Oak wood selection and maturation are essential steps in the course of barrel fabrication. Given the existence of many factors involved in the choice of raw material and in natural seasoning of oak wood, it is very difficult to determine the real impact of seasoning and selection factors on oak wood composition. A sampling was done to study the evolution of oak wood chemical composition during four seasoning steps: non matured, 12 months, 18 months and 24 months. For this sampling, three selection factors were taken into account: age, grain type and the Polyphenolic Index measured by Oakscan®. Besides extractables
(~10%), three polymers constitute the main part of oak wood: cellulose, hemicelluloses and lignins.