Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Abstract

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate. The research involves application of advanced local and regional scale weather and climate models, and their integration with grapevine phenological and crop models. The key aims are to improve adaptation of grape varieties to fine scale spatial variations of climate, and reduce the impact of climate variation and risk factors such as frost, cool spells and high temperatures. Improved optimization of wine-grape production through better knowledge of climate at high resolution within vineyard regions will contribute to the future sustainability of high quality wine production. An enhanced network of automatic weather stations (AWS) has been installed in New Zealand’s premier vineyard region (Marlborough) and the Weather Research and Forecasting (WRF) model has been set up to run twice daily at 1 km resolution through the growing season. Model performance has been assessed using AWS data and the model output is being used to derive high-resolution maps and graphs of bioclimatic indices for the vineyard region. Initial assessment of model performance suggested that WRF had a cold bias, but this was found to be due to errors in the default surface characteristics. Spatial patterns of predicted air temperature and bioclimatic indices appear to accurately represent the significant spatial variability caused by the complex terrain of the Marlborough region. An automated web page is being developed to provide wine-producers with daily up-dates of observed and modelled information for the vineyard region. Latest results of this research will be provided along with a review of the 2013-14 growing season, using data from both the climate station network and WRF model output. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew STURMAN (1), Tobias SCHULMANN (1), Iman SOLTANZADEH (1), Eila GENDIG (1), Peyman ZAWAR-REZA (1), Marwan KATURJI (1), Amber PARKER (3), Michael TROUGHT (2), Robert AGNEW (2) 

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand 
(2) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand 
(3) New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand 

Contact the author

Keywords

climate variability, viticulture, meteorological network, high-resolution climate modelling, Marlborough, New Zealand

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Post-plant nematicides: too little, too late for Northern root-knot nematode management

Context and Purpose. Management of plant-parasitic nematodes in perennial cropping systems such as wines grapes is challenging.

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin.
In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

The influence of external factors on the alcoholic fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains

Coping with heatwaves: management strategies for berry survival and vineyard resilience

Climate change is leading to an increase in average temperature and in the frequency and severity of heatwaves that is already significantly affecting grapevine phenology and berry composition (Webb et al., 2010). This is compounded by water stress, which is well known to increase the vulnerability of grapevines and berries to heatwaves. In hot climate regions like australia, grape production is only possible due to relatively secure supplies of water for irrigation. However, the upper temperature limits for berry survival of well-watered grapevines remains to be tested.