Terroir 2014 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2014 9 Grape growing climates, climate variability 9 Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Application of high-resolution climate measurement and modelling to the adaptation of New Zealand vineyard regions to climate variability

Abstract

Initial results are presented of research into the relationship between climate variability and viticulture in New Zealand vineyards. Atmospheric modelling and analytical tools are being developed to improve adaptation of viticultural practices and grape varieties to current and future climate. The research involves application of advanced local and regional scale weather and climate models, and their integration with grapevine phenological and crop models. The key aims are to improve adaptation of grape varieties to fine scale spatial variations of climate, and reduce the impact of climate variation and risk factors such as frost, cool spells and high temperatures. Improved optimization of wine-grape production through better knowledge of climate at high resolution within vineyard regions will contribute to the future sustainability of high quality wine production. An enhanced network of automatic weather stations (AWS) has been installed in New Zealand’s premier vineyard region (Marlborough) and the Weather Research and Forecasting (WRF) model has been set up to run twice daily at 1 km resolution through the growing season. Model performance has been assessed using AWS data and the model output is being used to derive high-resolution maps and graphs of bioclimatic indices for the vineyard region. Initial assessment of model performance suggested that WRF had a cold bias, but this was found to be due to errors in the default surface characteristics. Spatial patterns of predicted air temperature and bioclimatic indices appear to accurately represent the significant spatial variability caused by the complex terrain of the Marlborough region. An automated web page is being developed to provide wine-producers with daily up-dates of observed and modelled information for the vineyard region. Latest results of this research will be provided along with a review of the 2013-14 growing season, using data from both the climate station network and WRF model output. 

DOI:

Publication date: August 11, 2020

Issue: Terroir 2014

Type: Article

Authors

Andrew STURMAN (1), Tobias SCHULMANN (1), Iman SOLTANZADEH (1), Eila GENDIG (1), Peyman ZAWAR-REZA (1), Marwan KATURJI (1), Amber PARKER (3), Michael TROUGHT (2), Robert AGNEW (2) 

(1) Centre for Atmospheric Research, University of Canterbury, Christchurch, New Zealand 
(2) New Zealand Institute for Plant and Food Research Ltd, Blenheim, Marlborough, New Zealand 
(3) New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand 

Contact the author

Keywords

climate variability, viticulture, meteorological network, high-resolution climate modelling, Marlborough, New Zealand

Tags

IVES Conference Series | Terroir 2014

Citation

Related articles…

Uve e vini in vulcaniti basiche anorogeniche dei lessini meridionali, impronta petrochimica e assimilazione di metalli pesanti

Nel 2009 sono stati prelevati e analizzati mediante XRF (X-ray fluorescence) campioni di suolo, in vigneti sperimentali siti nelle province di Vicenza e di Ancona. Sono stati inoltre determinati in 2 campioni di mosto e 2 di vino delle varietà Verdicchio e Refosco dal peduncolo rosso, ed in 2 di uva Refosco dal peduncolo rosso, gli elementi in traccia mediante ICP-MS (Inductively coupled plasma-mass spectrometry).

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

Evaluation of viticultural suitability of Arezzo Province (Tuscany)

Dans une région comme la Toscane, zone dans laquelle sont produits certains des meilleurs vins italiens et du monde, la province d’Arezzo a actuellement une importance relativement marginale

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Use of glutathione and a selected strain of metschnikowia pulcherrima as alternatives to sulphur dioxide to inhibit natural tyrosinase of grape must and prevent browning

The enzymatic browning of grape must is still a major problem in oenology today [1] being particularly serious when the grapes have been infected by grey rot [2]. Browning is an oxidation process that causes certain foods to turn brown, which often leads to them being rejected by consumers [3]. This is a particular problem in the case of wine, because grape must is very vulnerable to enzymatic browning [4].