Terroir 2012 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2012 9 Grapegrowing soils 9 Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

Mapping intra-plot topsoil diversity of Burgundy vineyards (Aloxe-Corton, France) from very high spatial resolution (VHSR) images

Abstract

In this work, we present a method based on very high spatial resolution (VHSR) aerial images acquired in the visible domain and that map soil surface diversity at the hillslope scale with a spatial resolution of a few centimeters. This method combines aerial VHSR image classification with local soil sampling. Principal component analysis (PCA) and non-supervised classification was performed on image characteristics to define soil surface characteristic classes (SSC). Then soil surface mapping was combined with soil surface descriptions and soil profiles to define soil types by physical and chemical characteristics.

DOI:

Publication date: August 28, 2020

Issue: Terroir 2012

Type: Article

Authors

Emmanuel CHEVIGNY (1,2), Amélie QUIQUEREZ (1), Christophe PETIT (3), Pierre CURMI (2)

(1) UMR 6298 ArTeHiS, Université de Bourgogne, 6 bd Gabriel, F-21000 Dijon, France
(2) AgroSup Dijon,UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France
(3) UMR 7041 ArScAn, Université Paris 1 Panthéon La Sorbonne, 3rue Michelet, F-75006 Paris, France

Contact the author

Keywords

Soil mapping, vineyards, unmanned aerial vehicle, very high spatial resolution, soil surface characteristics.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion

Towards 2D mapping of gaseous ethanol in the headspace of wine glasses by infrared laser spectrometry

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the chemical space perceived by the consumer in the glass headspace.

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite.

Development of FTIR partial least squares models for polyphenol quantification in red wine during fermentation

Polyphenolic compounds are considered to have a major impact on the quality of red wines. Sensory impact, such as astringency and bitterness, stems directly from tannin composition. Thenceforth, quick analytical measurement of phenolic compounds appears to be a real challenge for winemaking monitoring and process control. Many methods were developed to analyzed polyphenols in wine, but they are time-consuming and require chemistry skills and equipment, not suitable for a rapid routine analysis. A reliable and rapid method to obtain this kind of measurement is Fourier Transform Infrared (FTIR) spectroscopy.