Terroir 2010 banner
IVES 9 IVES Conference Series 9 Isotope composition of wine as indicator of terroir spatial variability

Isotope composition of wine as indicator of terroir spatial variability

Abstract

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area. Spatial variability of δ13C and δ18O of wine was studied and the vineyard area was divided into six sub-areas for each isotope. Spatial variability of wine isotope composition could be explained by variation in soil properties of the vineyard. Isotope composition of wine was related to vegetative growth and yield components. The wine water δ18O was significantly correlated to lateral leaf area, total leaf area and vigour at harvest. Carbon isotope (δ13C) was an excellent indicator of yield per vine, cluster weight and berry weight. A significant correlation between δ13C and total leaf area/yield ratio was also observed. Significant correlation was also observed between wine water δ18O and the content of malic and tartaric acids in both grape and wine. Moreover, wine δ13C and δ18O were significantly correlated with the anthocyanins and total phenols content in grape. Colour density of wine was significantly related to wine water δ18O. Our results suggest that carbon (δ13C) and oxygen (δ18O) records in wines are useful tools to study spatial variability of terroir in viticulture.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Tardaguila J (1), Diago MP (1), Baluja J (1), Larcher R (2), Simoni M (2), Camin F (2)

(1) ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja). 26006 Logroño. Spain.
(2) IASMA – Fondazione E. Mach, 38010 San Michele all’Adige. Trento. Italy.
Abstract

Contact the author

Keywords

δ13C, δ18O, GIS, Tempranillo, grapevine, Vitis vinifera

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Proposal for the development of a framework for a globally relevant wine sector climate change adaptation strategy

Climate change is impacting wine production in all parts of the world in highly variable ways that may change the expression of terroir, from rapid loss of viability right through to highly beneficial aspects that increase suitability

The problem of the increasing pH in sparkling wines caused by climate change: use of cationic exchange to correct it

In recent years, the increase in temperature and the changes in rainfall distribution caused by climate change are affecting vine and grape physiology and are consequently impacting wine composition and quality (Schultz, 2000; Jones et al., 2005).

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Application of ultrasonic and refractometric measurements in enological samples and related model solutions

AIM: The refractive index is a basic optical property of materials and a key tool for the determination of major components in musts, such as sugars

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).