Terroir 2010 banner
IVES 9 IVES Conference Series 9 Isotope composition of wine as indicator of terroir spatial variability

Isotope composition of wine as indicator of terroir spatial variability

Abstract

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area. Spatial variability of δ13C and δ18O of wine was studied and the vineyard area was divided into six sub-areas for each isotope. Spatial variability of wine isotope composition could be explained by variation in soil properties of the vineyard. Isotope composition of wine was related to vegetative growth and yield components. The wine water δ18O was significantly correlated to lateral leaf area, total leaf area and vigour at harvest. Carbon isotope (δ13C) was an excellent indicator of yield per vine, cluster weight and berry weight. A significant correlation between δ13C and total leaf area/yield ratio was also observed. Significant correlation was also observed between wine water δ18O and the content of malic and tartaric acids in both grape and wine. Moreover, wine δ13C and δ18O were significantly correlated with the anthocyanins and total phenols content in grape. Colour density of wine was significantly related to wine water δ18O. Our results suggest that carbon (δ13C) and oxygen (δ18O) records in wines are useful tools to study spatial variability of terroir in viticulture.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Tardaguila J (1), Diago MP (1), Baluja J (1), Larcher R (2), Simoni M (2), Camin F (2)

(1) ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja). 26006 Logroño. Spain.
(2) IASMA – Fondazione E. Mach, 38010 San Michele all’Adige. Trento. Italy.
Abstract

Contact the author

Keywords

δ13C, δ18O, GIS, Tempranillo, grapevine, Vitis vinifera

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds

Antifungal and Laccase-Suppressing Activity of Phenolic Compounds and Their Oxidation Products on Grey Mold-Fungus Botrytis cinerea

Botrytis cinerea causes grey mold that results in severe problems for wine makers worldwide. Infected grapes lead to quality deterioration including formation of off-flavors or browning. The latter is caused by the enzyme laccase which is capable of oxidizing a wide range of phenolic compounds. Since the use of conventional pesticides is associated with many concerns of consumers and authorities regarding environmental and health related issues and may result in fungicide resistance, the development of green alternatives is gaining more attention.

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

Effect of mannoproteins extracted from Torulaspora delbrueckii on wine flavanol composition and on flavanol-salivary protein interactions

Global climate change is exerting an influence on vine phenology, leading to a decoupling of technological and phenolic maturity of grapes. This results in the modification of berry chemical composition, which can translate into wines with excessive astringency. The addition of mannoproteins (MP) to wine has been proposed as a way of mitigating this problem, since some studies have shown that MPs can modulate wine astringency. However, the mechanism underlying the astringency modulation effect of MPs is not well known and it seems to be dependent on the compositional and structural characteristics of the MP.