Terroir 2010 banner
IVES 9 IVES Conference Series 9 Isotope composition of wine as indicator of terroir spatial variability

Isotope composition of wine as indicator of terroir spatial variability

Abstract

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area. Spatial variability of δ13C and δ18O of wine was studied and the vineyard area was divided into six sub-areas for each isotope. Spatial variability of wine isotope composition could be explained by variation in soil properties of the vineyard. Isotope composition of wine was related to vegetative growth and yield components. The wine water δ18O was significantly correlated to lateral leaf area, total leaf area and vigour at harvest. Carbon isotope (δ13C) was an excellent indicator of yield per vine, cluster weight and berry weight. A significant correlation between δ13C and total leaf area/yield ratio was also observed. Significant correlation was also observed between wine water δ18O and the content of malic and tartaric acids in both grape and wine. Moreover, wine δ13C and δ18O were significantly correlated with the anthocyanins and total phenols content in grape. Colour density of wine was significantly related to wine water δ18O. Our results suggest that carbon (δ13C) and oxygen (δ18O) records in wines are useful tools to study spatial variability of terroir in viticulture.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Tardaguila J (1), Diago MP (1), Baluja J (1), Larcher R (2), Simoni M (2), Camin F (2)

(1) ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja). 26006 Logroño. Spain.
(2) IASMA – Fondazione E. Mach, 38010 San Michele all’Adige. Trento. Italy.
Abstract

Contact the author

Keywords

δ13C, δ18O, GIS, Tempranillo, grapevine, Vitis vinifera

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

Anthocyanin and trans-resveratrol accumulation is associated with abscisic acid and methyl jasmonicanthocyanin and trans-resveratrol accumulation is acid in berry skin of vitis vinifera L. Cvs. Malbec, Bonarda, Syrah, Cabernet sauvignon, and Pinot noir

Red grapes contain significant amounts of phenolic compounds, known to contribute to wine quality and to provide important health benefits. Berry skin phenolics can be elicited by plant hormones. The aim of this work was to increase the content of anthocyanins and trans-resveratrol in five red varieties cultured in Argentina: Malbec (M), Bonarda (B), Syrah (S), Cabernet Sauvignon (CS), and Pinot Noir (PN), in two different growing regions: Santa Rosa (SR) and Valle de Uco (VU), by applying a post-veraison hormonal treatment with abscisic acid (ABA) and methyl jasmonate (MeJA).

Evaluation of the efficiency of dialysis membranes in the wine dealcoholization process

The global wine production is continuously evolving to meet the new demands and preferences of consumers. in this evolving scenario, it’s important to determine which trends will be short-lived and which will remain over time. The promotion of healthier habits has encouraged consumers to try to find alternatives with low or no alcohol content. The challenge for the industry is to produce an alcohol-free wine that retains the familiar aromas and mouthfeel of traditional wine but without alcohol. Ethanol is the most abundant compound in wine, excluding water.

Integrated approaches for the functional characterization of miRNAs in grapevine

Micro(mi)RNAs are small non-coding RNAs that regulate several pathways and are widely recognised as key players in plant development, tissue differentiation, and many other important physiological processes, including plant adaptation to biotic and abiotic stresses. The release of plant genomes and the application of high throughput sequencing have considerably extended miRNA discovery across many species, including grapevine (Vitis spp.). Despite their relevance in plant development, functional studies in grapevine to clarify the function of miRNAs are not yet available. Through the grapevine genetic improvement platform IMPROVIT at CNR-IPSP (http://www.ipsp.cnr.it/en/thematics/turin-headquarter-thematics/improvit/), we developed integrated approaches to discover miRNA function in grapevine.

Use of computational modelling for selecting adsorbents for improved fining of wine

The occurrence of faults and taints in wine, such as those caused by microbial spoilage or various taints, have resulted in significant financial losses to wine producers. The wine industry commits significant financial resources towards fining and taint removal processes each year. Fining involves the addition of one or more adsorptive substrates to juice or wine to bind certain components, thus reducing their concentration [1]. However, these processes are often not selective and can also remove desirable flavour and aroma compounds.