Terroir 2010 banner
IVES 9 IVES Conference Series 9 Isotope composition of wine as indicator of terroir spatial variability

Isotope composition of wine as indicator of terroir spatial variability

Abstract

The goal of this work was to determine the spatial variability of terroir using the isotope composition of wine. Carbon (δ13C) and oxygen (δ18O) stable isotope composition was measured in wines from Tempranillo (Vitis vinifera L.) vineyard, located in Rioja Appellation (Spain). Stable isotope composition, leaf area, vigour, yield components, grape and wine composition were determined in a grid of 85 geo-referenced points, that was drawn across the 5 ha vineyard area. Spatial variability of δ13C and δ18O of wine was studied and the vineyard area was divided into six sub-areas for each isotope. Spatial variability of wine isotope composition could be explained by variation in soil properties of the vineyard. Isotope composition of wine was related to vegetative growth and yield components. The wine water δ18O was significantly correlated to lateral leaf area, total leaf area and vigour at harvest. Carbon isotope (δ13C) was an excellent indicator of yield per vine, cluster weight and berry weight. A significant correlation between δ13C and total leaf area/yield ratio was also observed. Significant correlation was also observed between wine water δ18O and the content of malic and tartaric acids in both grape and wine. Moreover, wine δ13C and δ18O were significantly correlated with the anthocyanins and total phenols content in grape. Colour density of wine was significantly related to wine water δ18O. Our results suggest that carbon (δ13C) and oxygen (δ18O) records in wines are useful tools to study spatial variability of terroir in viticulture.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Tardaguila J (1), Diago MP (1), Baluja J (1), Larcher R (2), Simoni M (2), Camin F (2)

(1) ICVV (Universidad de La Rioja, CSIC, Gobierno de La Rioja). 26006 Logroño. Spain.
(2) IASMA – Fondazione E. Mach, 38010 San Michele all’Adige. Trento. Italy.
Abstract

Contact the author

Keywords

δ13C, δ18O, GIS, Tempranillo, grapevine, Vitis vinifera

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

WHICH IMPACT FOR PROANTHOCYANIDIC TANNINS ON RED WINE FRUITY AROMA? SENSORY AND PHYSICOCHEMICAL APPROACHES

Previous research on the fruity character of red wines highlighted the role of esters. Literature provides evidence that, besides these esters, other compounds that are not necessarily volatiles may have an important impact on the overall aroma of wine, contributing to a modulation of its global aromatic expression. The goal of this work was to assess the olfactory consequences of a mixture between esters and proanthocyanidic tannins, through sensory and physico-chemical approaches. Sensory analysis of numerous aromatic reconstitutions, including triangular tests, detection thresholds, and sensory profiles, were conducted in order to evaluate the sensory impact of tannins on red wine esters perception.

StartupLab and HackaVitis: open innovation and technology transfer in the wine sector

The study analyzes a set of open innovation actions promoted by the innovation environments of the Instituto Federal do Rio Grande do Sul (IFRS), in cooperation with entities, companies in the sector and the Department of Innovation, Science and Technology of Rio Grande do Sul.

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Climate change is modifying environmental conditions in all wine-growing areas of the
world.

Port wine region settling

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.

Assessment of the bottled storage conditions on the volatile composition and sensorial characteristics of white wines

The quality of bottled white wines is highly influenced by their storage conditions, mainly temperature, and exposure to light and oxygen (1, 2).