Terroir 2010 banner
IVES 9 IVES Conference Series 9 Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Abstract

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices. We focus here on the vigor potential conferred by soil (VIPOS) that especially allows adapting the choice of the rootstock. An algorithm had previously been proposed by Morlat (2001) to estimate VIPOS according to three main influencing variables: water holding capacity of the soil, gravel percentage on the soil profile and parent rock hardness. Nevertheless, the VIPOS estimation, based on this algorithm, had to be completed by expertise. The objective of the paper is to present a new method to estimate VIPOS using a fuzzy expert system that allows having an automatically continuous estimation.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Coulon Cécile (1), Rioux Dominique (2), Guillaume Serge (3), Charnomordic Brigitte (4), Gérard Barbeau (1), Thiollet-Scholtus Marie(1)

(1) INRA UE1117, UMT Vinitera, 49071 Beaucouzé, France
(2) Cellule Terroirs Viticoles, UMT Vinitera, 49071 Beaucouzé, France
(3) Cemagref, UMR ITAP, 34196 Montpellier, France
(4) INRA Supagro, UMR MISTEA, 34060 Montpellier, France

Contact the author

Keywords

Vine vigor – Fuzzy expert system – Soil characteristics – Decision aid maps

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Agronomic behavior of three grape varieties in different planting density and irrigation treatments

In the O Ribeiro Denomination of Origin, there is a winemaking tradition of growing vines under a high-density plantation framework (8,920 vines/ha) and maintaining its vegetative cycle under rainfed conditions. Currently, viticulture is advancing to plantation frames in which the density is considered medium (5,555 vines/ha), thus allowing mechanized work to be carried out for vineyard management operations. Although, the application of irrigation applied proportionally to the needs of the vegetative cycle of the vine, is a factor that increasingly helps a good development of the vine compared to the summer period, with increasingly uncertain weather forecasts.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Heatwaves impacts on grapevine physiology, berry chemistry & wine quality

Climate change impacts on both yields and quality have increased over the past decades, with the effects of extreme climate events having the most dramatic and obvious impacts. Increasing length and intensity of heatwaves associated with increased water stress necessitates a reevaluation of climate change responses of grapevine and, ultimately, a reconsideration of vineyard management practices under future conditions. Here we summarize results from a three-year field trial manipulating irrigation prior to and during heatwave events to assess impacts of water application rates on vine health and physiology, berry chemistry, and wine quality. We also highlight potential mitigation strategies for extreme heat, both in terms of water application, as well as other cultural practices that could be widely applicable.

Which microorganisms contribute to mousy off-flavour in our wines?

In this video recording of the IVES science meeting 2024, Mariona H Gil i Cortiella (Universidad Autónoma de Chile, Santiago de Chile, Chile) speaks about Which microorganisms contribute to mousy off-flavour in owines. This presentation is based on articles accessible for free on OENO One and IVES Technical Reviews.

PRODUCTION OF A FUNCTIONAL BEVERAGE FROM WINEMAKING BY-PRODUCTS: A NEW WAY OF VALORISATION

In the challenge of transforming waste into useful products that can be re-used in a circular economy perspective, winery by-products can be considered as a source of potentially bioactive molecules such as polyphenols. The wine industry generates each year 20 million tons of by-products. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called SCOBY. It belongs to the field of healthy food for which the interest of consumers is growing. The objective of this work was to propose a new functional beverage made from winemaking by-products fermented by a Kombucha SCOBY.