Terroir 2010 banner
IVES 9 IVES Conference Series 9 Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Abstract

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices. We focus here on the vigor potential conferred by soil (VIPOS) that especially allows adapting the choice of the rootstock. An algorithm had previously been proposed by Morlat (2001) to estimate VIPOS according to three main influencing variables: water holding capacity of the soil, gravel percentage on the soil profile and parent rock hardness. Nevertheless, the VIPOS estimation, based on this algorithm, had to be completed by expertise. The objective of the paper is to present a new method to estimate VIPOS using a fuzzy expert system that allows having an automatically continuous estimation.

DOI:

Publication date: October 6, 2020

Issue: Terroir 2010

Type: Article

Authors

Coulon Cécile (1), Rioux Dominique (2), Guillaume Serge (3), Charnomordic Brigitte (4), Gérard Barbeau (1), Thiollet-Scholtus Marie(1)

(1) INRA UE1117, UMT Vinitera, 49071 Beaucouzé, France
(2) Cellule Terroirs Viticoles, UMT Vinitera, 49071 Beaucouzé, France
(3) Cemagref, UMR ITAP, 34196 Montpellier, France
(4) INRA Supagro, UMR MISTEA, 34060 Montpellier, France

Contact the author

Keywords

Vine vigor – Fuzzy expert system – Soil characteristics – Decision aid maps

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Differentiation and characterization of Spanish fortified wines with protected designation of origin based on volatiles using multivariate approaches

Spain is one of the main producers of high-quality fortified wines. Particularly some of them elaborated in Andalusia have acquired a great prestige for being unique due to their production in a specific geographical area with traditional methods, the grape variety used, the climate and the soil. Such is their distinguishing feature achieved that they have been protected by the European Union with the indication “Protected Designation of Origin” (PDO). Thus, there are four PDO of fortified wines in Andalucía (‘Condado de Huelva’, ‘Jerez Xérès Sherry’, ‘Manzanilla Sanlúcar de Barrameda’, and ‘Montilla-Moriles’). Furthermore, within each PDO,there are different categories according to their particular characteristics and winemaking conditions such as the aging process.

Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

The under-way zoning works of the Emilia viticulture have pointed out a huge variability of the features of the soils, which belong to this area.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.