Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Abstract

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Method and Results: Barossa, McLaren Vale, Hunter Valley, Canberra District, Heathcote and Yarra Valley were selected to represent a range of climatic conditions. In each region, three to four wines were chosen by a panel of local winemakers to represent the regional wine styles. Volatile fractions of all wines (n = 22) were extracted from 3 bottles, using a solid phase extraction protocol. The extracts were analysed in random order with GC-EI-QTOFMS. Features (a feature is an ion fragment with unique m/z, retention time and intensity) were extracted from the raw MS data and then grouped and deconvoluted, to give 321 ‘compound’ spectra. The feature with the highest intensity in each spectrum was taken to build a classification model using the random forests (RF) algorithm. This model was able to correctly classify all samples according to their GI. Features with lower contributions to the model were gradually eliminated, and 80 features were found to be sufficient to maintain the accuracy of classification. Of these 80 features, 45 were tentatively identified by comparing their mass spectra and Kovats retention indices with either an in-house library or the NIST 14 library. A range of these compounds, including terpenoids, benzenoids, esters, furan derivatives and aliphatic alcohols, have been associated with grape composition, wine making influences and the aging process.

Conclusion:

This study showed that Shiraz wines from different GIs have unique volatile ‘fingerprints’. These classifications may be associated with the unique terroir of the GI, which includes climatic and production differences. Well-designed processing tools for MS data and robust data mining algorithms served as a powerful combination of techniques to uncover the regional ‘fingerprints’.

Significance and Impact of the Study: This study realised the challenging assignment of separating commercial Shiraz wines from six GIs according to their volatile composition. Forming a part of a broader project that include sensory and climate data, it helps to benchmark regional styles of Australian Shiraz wine.  

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Sijing Li1*, Leigh Schmidtke1, Wes Pearson1,2, Leigh Francis2, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

Terroir, metabolomics, Australia, Shiraz, climate

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Soil and Climate Interactions with Grapevines

To test the hypothesis that soil type plays a minor role relative to that of vine vigor in the determination of yield, fruit composition and wine sensory attributes, 5 Chardonnay vineyards in the Niagara

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Texas terroir: gis characterization of the texas high plains ava

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Development of a standardized method for metabolite analysis by NMR to assess wine authenticity

The wine sector generates a considerable amount of wealth but is facing a growing problem of fraud. Wine counterfeiting is one of the oldest and most common cases of food fraud worldwide. Therefore, the authenticity and traceability of wine are major concerns for both the industry and consumers. To address these issues, robust and reliable analysis and control methods are necessary. Several methods have been developed, ranging from simple organoleptic tests to more advanced methodologies such as isotopic techniques or residual radioactivity measurements.