Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Abstract

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Method and Results: Barossa, McLaren Vale, Hunter Valley, Canberra District, Heathcote and Yarra Valley were selected to represent a range of climatic conditions. In each region, three to four wines were chosen by a panel of local winemakers to represent the regional wine styles. Volatile fractions of all wines (n = 22) were extracted from 3 bottles, using a solid phase extraction protocol. The extracts were analysed in random order with GC-EI-QTOFMS. Features (a feature is an ion fragment with unique m/z, retention time and intensity) were extracted from the raw MS data and then grouped and deconvoluted, to give 321 ‘compound’ spectra. The feature with the highest intensity in each spectrum was taken to build a classification model using the random forests (RF) algorithm. This model was able to correctly classify all samples according to their GI. Features with lower contributions to the model were gradually eliminated, and 80 features were found to be sufficient to maintain the accuracy of classification. Of these 80 features, 45 were tentatively identified by comparing their mass spectra and Kovats retention indices with either an in-house library or the NIST 14 library. A range of these compounds, including terpenoids, benzenoids, esters, furan derivatives and aliphatic alcohols, have been associated with grape composition, wine making influences and the aging process.

Conclusion:

This study showed that Shiraz wines from different GIs have unique volatile ‘fingerprints’. These classifications may be associated with the unique terroir of the GI, which includes climatic and production differences. Well-designed processing tools for MS data and robust data mining algorithms served as a powerful combination of techniques to uncover the regional ‘fingerprints’.

Significance and Impact of the Study: This study realised the challenging assignment of separating commercial Shiraz wines from six GIs according to their volatile composition. Forming a part of a broader project that include sensory and climate data, it helps to benchmark regional styles of Australian Shiraz wine.  

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Sijing Li1*, Leigh Schmidtke1, Wes Pearson1,2, Leigh Francis2, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

Terroir, metabolomics, Australia, Shiraz, climate

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Regenerative agricultural winegrowing systems play a role in refining the expression of terroir in the pacific coast region of United States and Canada

By definition, Regenerative Agricultural Systems seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Bioprotective non-Saccharomyces yeast as an alternative to sulfites for the winemaking process

Sulfur dioxide (SO2) is used in winemaking due of its antioxidant, antioxydasic and antiseptic properties. Excessive amount of SO2 can negatively impact wine sensory perception and be detrimental for health. Agri-food industries are more transparent towards consumers concerning addition of sulfites, and oenology is no exception in this clairvoyance. As a consequence, the increase of consumers preference for wine with low or absent of sulfites addition is notorious. In this context, the impact of low/zero sulfites winemaking process on the microbial community should be evaluated. Moreover, microbial agents corresponding to bioprotective cultures represent a growing interest as an alternative to sulfites preservation in the early stages of vinification. However, scientific studies conducted to demonstrate their real effect are almost rare.