Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Abstract

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Method and Results: Barossa, McLaren Vale, Hunter Valley, Canberra District, Heathcote and Yarra Valley were selected to represent a range of climatic conditions. In each region, three to four wines were chosen by a panel of local winemakers to represent the regional wine styles. Volatile fractions of all wines (n = 22) were extracted from 3 bottles, using a solid phase extraction protocol. The extracts were analysed in random order with GC-EI-QTOFMS. Features (a feature is an ion fragment with unique m/z, retention time and intensity) were extracted from the raw MS data and then grouped and deconvoluted, to give 321 ‘compound’ spectra. The feature with the highest intensity in each spectrum was taken to build a classification model using the random forests (RF) algorithm. This model was able to correctly classify all samples according to their GI. Features with lower contributions to the model were gradually eliminated, and 80 features were found to be sufficient to maintain the accuracy of classification. Of these 80 features, 45 were tentatively identified by comparing their mass spectra and Kovats retention indices with either an in-house library or the NIST 14 library. A range of these compounds, including terpenoids, benzenoids, esters, furan derivatives and aliphatic alcohols, have been associated with grape composition, wine making influences and the aging process.

Conclusion:

This study showed that Shiraz wines from different GIs have unique volatile ‘fingerprints’. These classifications may be associated with the unique terroir of the GI, which includes climatic and production differences. Well-designed processing tools for MS data and robust data mining algorithms served as a powerful combination of techniques to uncover the regional ‘fingerprints’.

Significance and Impact of the Study: This study realised the challenging assignment of separating commercial Shiraz wines from six GIs according to their volatile composition. Forming a part of a broader project that include sensory and climate data, it helps to benchmark regional styles of Australian Shiraz wine.  

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Sijing Li1*, Leigh Schmidtke1, Wes Pearson1,2, Leigh Francis2, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

Terroir, metabolomics, Australia, Shiraz, climate

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Clarification or fining of wines is a technique used in wineries to eliminate unwanted wine components, which negatively affect its quality. Clarification normally involves the addition of an adsorptive material that eliminates or reduces the presence of undesirable components. The problem is that many of the fining agents used in the industry contain allergens, such as caseinates or ovalbumin.

The influence of RNAi-expressing rootstocks in controlling grey mold on grapevine cultivars

Worldwide, with an average of 6.7 million cultivated hectares, of which exclusively 51% in Europe (faostat, 2021), the production of table and wine grapes is a leading sector, with continued growth in Europe in the area devoted to vine cultivation. during the growing season, most of the plant organs can be susceptible to several fungal and oomycete diseases, leading to important economic losses and causing detrimental effects on fruit quality. the increasingly scarce availability of fungicidal products, often also related to their relative impact on the environment, coupled with the emergence of resistance in the pathogen to these products, make defence increasingly challenging.

Microbial metagenomics of vineyard soils and wine terroir

Aims: The aims of this study were to (i) characterize bacterial and fungal communities in selected Australian vineyard soils and (ii) determine if the soil microbiome composition and diversity varied between different zones within a vineyard. 

Ultra high pressure liquid chromatography for stilbenes separation and their determination in Burgundy red wines

In this study for the first time, eight natural stilbenes (trans-resveratrol, trans-piceid, cis-piceid, trans-astringin, trans-piceatannol, (+)-trans-s-viniferin, pallidol and hopeaphenol) isolated and purified from Vitis vinifera, were simultaneously separated and analysed within 5 mn by ultra high pressure liquid chromatography coupled with photodiode array detection.