Terroir 2020 banner
IVES 9 IVES Conference Series 9 Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Unravelling regional typicality of Australian premium Shiraz through an untargeted metabolomics approach

Abstract

Aims: The current study seeks to demonstrate that premium Shiraz wines from different Australian geographic indications (GI) can be distinguished by their volatile compound composition. 

Method and Results: Barossa, McLaren Vale, Hunter Valley, Canberra District, Heathcote and Yarra Valley were selected to represent a range of climatic conditions. In each region, three to four wines were chosen by a panel of local winemakers to represent the regional wine styles. Volatile fractions of all wines (n = 22) were extracted from 3 bottles, using a solid phase extraction protocol. The extracts were analysed in random order with GC-EI-QTOFMS. Features (a feature is an ion fragment with unique m/z, retention time and intensity) were extracted from the raw MS data and then grouped and deconvoluted, to give 321 ‘compound’ spectra. The feature with the highest intensity in each spectrum was taken to build a classification model using the random forests (RF) algorithm. This model was able to correctly classify all samples according to their GI. Features with lower contributions to the model were gradually eliminated, and 80 features were found to be sufficient to maintain the accuracy of classification. Of these 80 features, 45 were tentatively identified by comparing their mass spectra and Kovats retention indices with either an in-house library or the NIST 14 library. A range of these compounds, including terpenoids, benzenoids, esters, furan derivatives and aliphatic alcohols, have been associated with grape composition, wine making influences and the aging process.

Conclusion:

This study showed that Shiraz wines from different GIs have unique volatile ‘fingerprints’. These classifications may be associated with the unique terroir of the GI, which includes climatic and production differences. Well-designed processing tools for MS data and robust data mining algorithms served as a powerful combination of techniques to uncover the regional ‘fingerprints’.

Significance and Impact of the Study: This study realised the challenging assignment of separating commercial Shiraz wines from six GIs according to their volatile composition. Forming a part of a broader project that include sensory and climate data, it helps to benchmark regional styles of Australian Shiraz wine.  

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Sijing Li1*, Leigh Schmidtke1, Wes Pearson1,2, Leigh Francis2, John Blackman1

1National Wine and Grape Industry Centre, Charles Sturt University, School of Agricultural and Wine Science, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
2The Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

Terroir, metabolomics, Australia, Shiraz, climate

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants.

Effect of ageing with Specific Inactivated Dry Yeasts on the volatile composition of Sauvignon Blanc and Carménère wines

Úbeda-Aguilera, C a, b, Peña-Neira, A.b Del Barrio-Galán, R.b, c a Biomedical Sciences Institute, Science Faculty, Universidad Autónoma de Chile, Chile. b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile c Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las Condes, Santiago, Chile The wine is a complex matrix made up of several compounds which can interact among themselves throughout the wine ageing process, thereby modifying their sensorial characteristics. It is well known that during ageing of wines on lees, polysaccharides (mainly mannoproteins) can be released and can interact with the aromatic fraction modifying its volatility.

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

Cinétique de développement de la Pourriture Noble dans différents terroirs des Coteaux du Layon : mise au point d’une méthodologie

Dans la région des Coteaux du Layon, en Maine et Loire, l’effet terroir et son déterminisme sont étudiés dans le cadre de la production des vins liquoreux.
Ces vins sont le résultat d’une maturité poussée au delà de celle prévue par la nature afin de donner aux baies une teneur en sucre et en matière sèche très forte, pour mieux valoriser ces effets de la surmaturation, les baies sont récoltées selon la méthode des tries successives (Asselin et al, 1996). Ainsi, on ne récolte à chaque passage que les grains ayant atteint le niveau de concentration requis pour obtenir des vins à fort degré d’alcool avec des sucres résiduels.