Terroir 2020 banner
IVES 9 IVES Conference Series 9 Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Abstract

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.

Methods and Results: Shiraz wines from the six Barossa sub-regions (Central Grounds, Eastern Edge, Northern Grounds, Southern Grounds, Western Ridge and Eden Valley) were evaluated blind and in duplicate using descriptive sensory analysis by a highly trained panel of 12 experienced tasters. Evaluated wines were made with either standardised small lot winemaking (40L ferments, 2018 n= 69, 2019 n=72) or commercially produced (2018 n=44, 2019 n=76). Wine samples for sensory analysis were collected directly after completing malolactic fermentation and before maturation in oak or blending. Each vintage, the two sample sets were evaluated consecutively by the same panel, small lot wines followed directly by the commercially produced samples.

Results of the canonical variate analysis showed that wines from Eden Valley were consistently characterised as being more savoury (meaty, broth) compared to the other five sub-regions, for both vintages and production methods. Unlike their industry scale counterparts, research wines from the Western Ridge sub-region were characterised as more tannic (astringent, rough) for both vintages. Less consistent separation was observed for the other four sub-regions, with wines generally being described as fruit forward, with intense dark and red fruit.

Conclusions: 

Sensory profiles of Shiraz wines from the six Barossa sub-regions revealed a small number of consistent sub-regional characteristics for both standardised and industry scale wine samples across the two vintages.

Significance and Impact of the Study: Detailed sensory profiles for research and industry scale wine can provide valuable information for producers to best showcase wine sub-regional characteristics for marketing/promotional purposes. Next, sensory profile findings will be analysed along with soil, climate, berry and wine composition data as well as information on viticultural practices in an attempt to explain sub-regional differences and identify drivers of regionality.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Keywords

Sensory profiling, typicity, descriptive analysis, regionality, red wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Non-invasive headspace sorptive extraction for monitoring volatile compounds production by saccharomyces and non-saccharomyces strains throughout alcoholic fermentation

Wine is a solution containing abundant volatile compounds which contribute to their aroma. Many of them are produced by yeast as metabolism by-products. Different yeast strains produce different volatile profiles. The possibility of studying the evolution of volatile compounds during fermentation, using sampling methods that not alter the volume of fermentation media, is of great interest. In spite of this, non-invasive methods to monitoring the evolution of volatile profile during fermentation have been seldom used. The goals of this work were to use by first time the headspace sorptive extraction (HSSE) as non-invasive method to monitor the evolution of volatile profiles throughout alcoholic fermentation and to study the changes on volatile profiles produced by Saccharomyces cerevisiae and Lachancea thermotolerans during fermentation of a must with high sugar content.

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

Impact of grape maturity on esters content and sensory characters in wines fermented with yeast strains of different genetic backgrounds

Grapes composition is a factor well known to affect wines composition and sensory expression. The goal of this study was to evaluate how grapes composition modifications linked to maturity level could affect wines aromatic expression and esters composition.

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...