Terroir 2020 banner
IVES 9 IVES Conference Series 9 Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Sensory profiles of Shiraz wine from six Barossa sub-regions: a comparison between industry scale and standardised small lot research wine making

Abstract

Aims: The Barossa wine region in South Australia comprises six sub-regions and is renowned for its Shiraz wines. However, there is no comprehensive documentation of the distinctive sensory characteristics of wines from these sub-regions.

Methods and Results: Shiraz wines from the six Barossa sub-regions (Central Grounds, Eastern Edge, Northern Grounds, Southern Grounds, Western Ridge and Eden Valley) were evaluated blind and in duplicate using descriptive sensory analysis by a highly trained panel of 12 experienced tasters. Evaluated wines were made with either standardised small lot winemaking (40L ferments, 2018 n= 69, 2019 n=72) or commercially produced (2018 n=44, 2019 n=76). Wine samples for sensory analysis were collected directly after completing malolactic fermentation and before maturation in oak or blending. Each vintage, the two sample sets were evaluated consecutively by the same panel, small lot wines followed directly by the commercially produced samples.

Results of the canonical variate analysis showed that wines from Eden Valley were consistently characterised as being more savoury (meaty, broth) compared to the other five sub-regions, for both vintages and production methods. Unlike their industry scale counterparts, research wines from the Western Ridge sub-region were characterised as more tannic (astringent, rough) for both vintages. Less consistent separation was observed for the other four sub-regions, with wines generally being described as fruit forward, with intense dark and red fruit.

Conclusions: 

Sensory profiles of Shiraz wines from the six Barossa sub-regions revealed a small number of consistent sub-regional characteristics for both standardised and industry scale wine samples across the two vintages.

Significance and Impact of the Study: Detailed sensory profiles for research and industry scale wine can provide valuable information for producers to best showcase wine sub-regional characteristics for marketing/promotional purposes. Next, sensory profile findings will be analysed along with soil, climate, berry and wine composition data as well as information on viticultural practices in an attempt to explain sub-regional differences and identify drivers of regionality.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Keywords

Sensory profiling, typicity, descriptive analysis, regionality, red wine

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Impact of industrial-scale serial filtration on macromolecules in red wines

Filtration is a critical step in ensuring the clarity and microbial stability of wine prior to bottling. However the process of filtering potentially reduces red wine quality by removing some of the macromolecules that contribute to the texture of the wine. Commercial red wines, Cabernet Sauvignon (CAS) and Shiraz (SHZ), of two vintages and two grades (premium grade wines from the older vintage: CAS13 and SHZ13; and standard grade wines from a younger vintage: CAS14 and SHZ14) were filtered through industrial-scale commercial filtration units prior to bottling. Samples were taken before and after cross-flow filtration, lenticular filters, 0.65 µm and 0.45 µm pore size nylon membrane filters. The concentration and composition of macromolecules, including tannins and polysaccharides, were measured in all samples as well as particle size distribution and wine colour.

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Potential of new genetic resources to improve drought adaptation of grapevine rootstocks

Grapevines are grown mainly as grafts worldwide, but the rootstocks most commonly used were selected between the late 19th and early 20th centuries and are based on reduced genetic diversity[1]. In the context of climate change, it is indeed urgent to diversify the range of rootstocks with genotypes much more adapted to drier environments, than the existing ones[2]. The aim of this study was to evaluate the potential of new genetic resources for grapevine rootstock breeding programs. For this purpose, 12 American and Asian wild Vitis species (3 to 5 accessions per species = 50 accessions) were evaluated for their rooting ability and drought response.

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.