Terroir 2020 banner
IVES 9 IVES Conference Series 9 Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Abstract

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four representative wineries in 2016. Total 207 O. oeni strains were isolated and identified by species-specific PCR. Following that, 206 amplified fragment length polymorphism (AFLP) genotypes were detected, with the similarity coefficients ranging between 63% – 97%. Based on the UPGMA, two major phylogroups were deciphered at 81% similarity level. Interestingly, the strains in different phylogroups were isolated from wines of different cultivars. In addition, strains from the same winery formed a unique cluster.

Conclusions: 

Our results indicate there is an obvious genetic relationship of O. oeni with grape cultivars and their origins. Our results also support the fact that O. oeni is an important factor related to the wine terroir. 

Significance and Impact of the Study: The Chinese wine industry has steadily grown in recent years. However, limited development and application of indigenous O. oeni strains would lead to homogeneity in wine quality. The outcome of this study would lay down the theoretical foundation for the development of indigenous O. oeni strains with regional characteristics.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Kan Shi1,3 ,4, Huawei Gu2, Dongliang Yu5, Shuwen Liu1,3,4*

1College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
2College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
3Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China
4Heyang Experimental and Demonstrational Stations for Grape, Weinan, Shaanxi 715300, China
5Qinhuangdao Chateau Kings Global Co., Ltd, Changli, Hebei 066600, China

Contact the author

Keywords

Wine, Oenococcus oeni, genetic diversity, AFLP

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Carbon isotope labeling to detect source-sink relationships in grapevines upon drought stress and re-watering

Kinetics of carbon allocation in the different plant sinks (root-shoot-fruit) competing in drought stressed and rehydrated grapevines have been investigated.

Three Nebbiolo clone anthocyanin profile as affected by environmental conditions

Vitis vinifera ‘Nebbiolo’ cultivar is a 3’-subsituted anthocyanin prevalent wine variety. It is grown in North-West Italy for the production of high quality ageing wines. In the present work berry skin anthocyanin amounts and profiles of the clones CVT 308, CVT 423 and CVT 142 were studied in 2004 and in 2005 in four environmentally different locations of North-West Italy: Donnas (steep mountain area), Monforte (hilly area, with a pH of 8.1), Vezza (hilly area, with a pH of 8.2) and Lessona (plain area, with a pH of 4.8).

La pianificazione del paesaggio agrario vitivinicolo del basso Monferrato

Monferrato is a sub region of Piedmont featuring an endless series of hills which have been moulded through the centuries by laborious farming. Vineyards have always been the protagonists of Monferrato landscape. Asti vineyards have been well-known since Roman times and Pliny the Elder mentions them.

Microbial consortia as a tool for sustainable vineyard management: A study on their acceptance among Veneto region’s grape-growers

In recent years, sustainability has become a key focus in agriculture, including viticulture.

Holistic characterization of Sangiovese clones 

Sangiovese is one of Italy’s most cultivated grape varieties, and currently, over 130 different clones are registered in the national register of grape varieties. However, despite the sangiovese genome having been re-sequenced, limited molecular and genomic information is still available for this cultivar. The present study investigates the complexity of genotype-environment interactions of ten different Sangiovese clones, cultivated in the Chianti Rufina DOCG district over five consecutive vintages (2016-2020).