Terroir 2020 banner
IVES 9 IVES Conference Series 9 Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Genetic diversity of Oenococcus oeni strains isolated from Yinchuan wine region in the East of Helan Mountain, China

Abstract

Aim: This study aimed to isolate Oenococcus oeni in red wines from Yinchuan wine region in the East of Helan Mountain, China, and analysis their genetic diversity.

Methods and Results: Oenococcus oeni strains were isolated from Cabernet Sauvignon and Cabernet Gernischt wines of four representative wineries in 2016. Total 207 O. oeni strains were isolated and identified by species-specific PCR. Following that, 206 amplified fragment length polymorphism (AFLP) genotypes were detected, with the similarity coefficients ranging between 63% – 97%. Based on the UPGMA, two major phylogroups were deciphered at 81% similarity level. Interestingly, the strains in different phylogroups were isolated from wines of different cultivars. In addition, strains from the same winery formed a unique cluster.

Conclusions: 

Our results indicate there is an obvious genetic relationship of O. oeni with grape cultivars and their origins. Our results also support the fact that O. oeni is an important factor related to the wine terroir. 

Significance and Impact of the Study: The Chinese wine industry has steadily grown in recent years. However, limited development and application of indigenous O. oeni strains would lead to homogeneity in wine quality. The outcome of this study would lay down the theoretical foundation for the development of indigenous O. oeni strains with regional characteristics.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Kan Shi1,3 ,4, Huawei Gu2, Dongliang Yu5, Shuwen Liu1,3,4*

1College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
2College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
3Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi 712100, China
4Heyang Experimental and Demonstrational Stations for Grape, Weinan, Shaanxi 715300, China
5Qinhuangdao Chateau Kings Global Co., Ltd, Changli, Hebei 066600, China

Contact the author

Keywords

Wine, Oenococcus oeni, genetic diversity, AFLP

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Formation And Evolution Of Minty Terpenoids During Model Ageing Of Cabernet Franc And Merlot Wines

In recent years, a pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in long aged red Bordeaux wines (Lisanti et al., 2021, Picard et al., 2016; Picard et al., 2017). These compounds were found to play a key role in the so-called “ageing bouquet”, that can be defined as “the homogeneous, harmonious flavour resulting from the complex transformation process in wine during bottle storage” (Picard et al., 2015). Moreover the minty-fresh sensory dimension in fine aged red wines plays an important role in typicity judgement by wine professionals (Picard et al., 2015).

Characterization of commercial enological tannins and its effect on human saliva diffusion

Commercial oenological tannins (TECs) are widely used in the wine industry. TECs are rich in condensed tannins, hydrolyzable tannins or a mixture of both. Wine grapes are a important source of proanthocyanidins or condensed tannins while oak wood possess a high concentration of hydrolyzable tannins (Obreque-Slier et al., 2009). TECs contribute with the antioxidant capacity of wine, catalyze oxide-reduction reactions and participate in the removal of sulfur compounds and metals.

Caractérisation des terroirs viticoles champenois

The Champagne vineyard extends over 35,300 ha under the Appellation d’Origine Contrôlée, of which 30,000 are in production. It mainly covers 3 departments: in order of importance, Marne (68% of the appellation area), Aube (22%) and Aisne (10%), and more anecdotally Haute Marne and Seine and Mame. It is a young vineyard (for more than half of the surface, the winegrowers have the experience of only one generation of vines), and fragmented (more than half of the exploitations extend over less than 1 ha; the average size of a cadastral parcel is 12 ares).

Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine: is this a key for understanding rootstock conferred vigour?

Grapevine, Vitis vinifera, requires grafting on Phylloxera tolerant rootstocks of American origin in most viticultural areas of the world. The most commonly used species in rootstock creation are V. berlandieri, V. riparia and V. rupestris. Rootstocks not only provide tolerance to Phylloxera but assure the supply of water and mineral nutrients to the scion. The objective of this work was to determine to what extent rootstocks of different parentages alter the mineral composition of petioles of grapevine.

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.