Terroir 2020 banner
IVES 9 IVES Conference Series 9 Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Abstract

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella. 

Methods and Results: Grapes of Corvina and Corvinone were harvested in the same field in 2018 and placed in two different ‘fruttai’, equipped with stations for constant registration of internal temperature and humidity. The expression of genes encoding terpenoid synthase, stilbene synthase, pectin metylesterase and laccase, previously reported to be highly dependent on the environmental condition during dehydration, were analyzed. The results showed that the four genes increased their expression during withering in both genotypes, with clear differences in the pattern of expression associated to the two ‘fruttai’, and sometimes highlighting a genotype-per-environment interaction.

Conclusions: 

This experimental plan revealed important relationships between the natural climatic conditions of the site where the dehydration takes place, and the molecular response of dehydrating berries.

Significance and Impact of the Study:  The postharvest dehydration of grape berries is a traditional method used to produce ‘passito’ wines such as Amarone and Recioto in the Valpolicella area of Italy. This technique allows the concentration of sugars and other solutes in the berry and promotes the synthesis of metabolites and aroma compounds unique to these wines. These dynamic changes are dependent on environmental parameters such as temperature and relative humidity. In Valpolicella, the dehydration process is made in naturally ventilated rooms called ‘fruttai’, where the internal environmental conditions are strictly dependent on the external meso-climate. This study improved our understanding of the influence of the geographic location of the ‘fruttaio’ on the expression of quality biomarkers of dehydrated grapes. In this context, the molecular analytical approach represents a powerful tool to explore the ongoing metabolisms of grapes dehydrated in different conditions and may allow to highlight and preserve the typicity of the wine by linking its quality to a “postharvest dehydration terroir.”

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

G.B. Tornielli1*, M. Bona1, E. D’Incà1, S. Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy

Contact the author

Keywords

Postharvest dehydration, appassimento, Valpolicella, Amarone, gene expression

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Short-term relationships between climate and grapevine trunk diseases in southern French vineyards

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Impact of toasting and botanical origin on oak wood (Q. sp.) volatilome using untargeted GCxGC-ToFMS analysis

Many works have been carried out to identify the key aroma volatile compounds of oak wood (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using conventional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS). Inspired by recent untargeted approaches in the field of food “omics”, this work aims to extend our knowledge on the impact of cooperage process on the volatile composition of oak wood using two-dimensional comprehensive gas chromatography coupled with time of flight mass spectrometry (GCxGC-ToFMS).

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.