Terroir 2020 banner
IVES 9 IVES Conference Series 9 Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Abstract

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella. 

Methods and Results: Grapes of Corvina and Corvinone were harvested in the same field in 2018 and placed in two different ‘fruttai’, equipped with stations for constant registration of internal temperature and humidity. The expression of genes encoding terpenoid synthase, stilbene synthase, pectin metylesterase and laccase, previously reported to be highly dependent on the environmental condition during dehydration, were analyzed. The results showed that the four genes increased their expression during withering in both genotypes, with clear differences in the pattern of expression associated to the two ‘fruttai’, and sometimes highlighting a genotype-per-environment interaction.

Conclusions: 

This experimental plan revealed important relationships between the natural climatic conditions of the site where the dehydration takes place, and the molecular response of dehydrating berries.

Significance and Impact of the Study:  The postharvest dehydration of grape berries is a traditional method used to produce ‘passito’ wines such as Amarone and Recioto in the Valpolicella area of Italy. This technique allows the concentration of sugars and other solutes in the berry and promotes the synthesis of metabolites and aroma compounds unique to these wines. These dynamic changes are dependent on environmental parameters such as temperature and relative humidity. In Valpolicella, the dehydration process is made in naturally ventilated rooms called ‘fruttai’, where the internal environmental conditions are strictly dependent on the external meso-climate. This study improved our understanding of the influence of the geographic location of the ‘fruttaio’ on the expression of quality biomarkers of dehydrated grapes. In this context, the molecular analytical approach represents a powerful tool to explore the ongoing metabolisms of grapes dehydrated in different conditions and may allow to highlight and preserve the typicity of the wine by linking its quality to a “postharvest dehydration terroir.”

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

G.B. Tornielli1*, M. Bona1, E. D’Incà1, S. Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy

Contact the author

Keywords

Postharvest dehydration, appassimento, Valpolicella, Amarone, gene expression

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

Ultra high pressure liquid chromatography for stilbenes separation and their determination in Burgundy red wines

In this study for the first time, eight natural stilbenes (trans-resveratrol, trans-piceid, cis-piceid, trans-astringin, trans-piceatannol, (+)-trans-s-viniferin, pallidol and hopeaphenol) isolated and purified from Vitis vinifera, were simultaneously separated and analysed within 5 mn by ultra high pressure liquid chromatography coupled with photodiode array detection.

How the management of ph during winemaking affects acetaldehyde evolution and the formation of polymeric phenolics over the red wine aging

The aim of this study is to evaluate the role of pH on both the acetaldehyde chemistry and wine phenolics evolution over the aging period. In addition, the effect of both an early and late acidification was evaluated

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.