Terroir 2020 banner
IVES 9 IVES Conference Series 9 Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Towards the definition of a terroir of grape dehydration for the production of ‘Passito’ wines in Valpolicella (Italy)

Abstract

Aim: The aim of this study was to investigate the relationship between the molecular response of grapes during postharvest dehydration and the specific environment of two naturally ventilated rooms (called ‘fruttai’), located in two different sites in Valpolicella. 

Methods and Results: Grapes of Corvina and Corvinone were harvested in the same field in 2018 and placed in two different ‘fruttai’, equipped with stations for constant registration of internal temperature and humidity. The expression of genes encoding terpenoid synthase, stilbene synthase, pectin metylesterase and laccase, previously reported to be highly dependent on the environmental condition during dehydration, were analyzed. The results showed that the four genes increased their expression during withering in both genotypes, with clear differences in the pattern of expression associated to the two ‘fruttai’, and sometimes highlighting a genotype-per-environment interaction.

Conclusions: 

This experimental plan revealed important relationships between the natural climatic conditions of the site where the dehydration takes place, and the molecular response of dehydrating berries.

Significance and Impact of the Study:  The postharvest dehydration of grape berries is a traditional method used to produce ‘passito’ wines such as Amarone and Recioto in the Valpolicella area of Italy. This technique allows the concentration of sugars and other solutes in the berry and promotes the synthesis of metabolites and aroma compounds unique to these wines. These dynamic changes are dependent on environmental parameters such as temperature and relative humidity. In Valpolicella, the dehydration process is made in naturally ventilated rooms called ‘fruttai’, where the internal environmental conditions are strictly dependent on the external meso-climate. This study improved our understanding of the influence of the geographic location of the ‘fruttaio’ on the expression of quality biomarkers of dehydrated grapes. In this context, the molecular analytical approach represents a powerful tool to explore the ongoing metabolisms of grapes dehydrated in different conditions and may allow to highlight and preserve the typicity of the wine by linking its quality to a “postharvest dehydration terroir.”

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

G.B. Tornielli1*, M. Bona1, E. D’Incà1, S. Zenoni1

1Department of Biotechnology, University of Verona, Verona, Italy

Contact the author

Keywords

Postharvest dehydration, appassimento, Valpolicella, Amarone, gene expression

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Effect of row direction in the upper part of the hillside vineyard of Somló, Hungary

Hillside vineyards have a great potential to produce world class wines. The unique microclimate lead to the production of rich, flavory wines.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].

The wine: a never-ending source of H2S and methanethiol

Volatile sulfur compounds (VSCs), mainly hydrogen sulfide and methanethiol (H2S and MeSH), are the responsible for reductive off-odor in wine.

Correlation between skin cell wall composition and phenolic extractability in Cabernet sauvignon wines

The phenolic component of red wine is responsible for important elements of flavor and mouthfeel, and thus quality of the finished wine. Additionally, many of these phenolics have been associated with health benefits such as reduction of the risk of developing cardiovascular disease, cancer, osteoporosis and preventing Alzheimer’s disease. While the origins, concentrations, and chemistries of the phenolics in a finished red wine are well known, the fundamental mechanisms and kinetics of extraction of these phenolics from grape skins and seeds during red wine fermentation are poorly understood. This lack of knowledge regarding the extraction mechanisms of phenolics during red wine fermentation makes informed manipulations of the finished wine’s phenolic composition difficult.

Under-vine cover crops as a management tool for irrigated Mediterranean vineyards: agronomic implications and changes in soil physical and biological properties 

Cover crops are increasingly considered in Mediterranean climate vineyards due to a combination of agronomic and regulatory considerations. However, the soil under the vines themselves is typically kept free of vegetation by mechanical plowing or herbicide spraying. Taking into account that these practices may convey a number of non-favourable economic and environmental implications, and the fact that drip irrigation can ease the use of cover crops under the vines, the aim of this work was to evaluate the agronomic implications and the changes in soil physical and biological properties caused by an under-vine cover crop in a Mediterranean area.