Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Abstract

Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality. Relying on the key role of oxidation for phenolic ripening, a freeze-thaw treatment was proposed to improve the fruit quality for potential use in challenging growing conditions. The experiment was carried on in two distinctive viticultural areas, Michigan and Italy. Five cultivars (Cabernet franc, Cabernet-Sauvignon, Merlot, Pinot noir and Chambourcin) and six cultivars (Cabernet-Sauvignon, Sangiovese, Syrah, Croatina, Barbera and Nebbiolo) were used in Michigan and Italy, respectively. Samples were collected at different phenological stages, to describe the natural ripening process and grape seeds were characterized before and after a freeze-thaw treatment. Colorimetric and spectrophotometric data highlighted similarities among natural and artificial seed ripening promising future applications for the wine industries.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

RUSTIONI Laura1*, COLA Gabriele2, VANDERWEIDE Josh3, MURAD Patrick3, FAILLA Osvaldo2, SABBATINI Paolo3

1 DiSTeBA – Università del Salento
2 DISAA – Universita’ Degli Studi di Milano
3 Department of Horticulture, Plant & Soil Sciences Building, Michigan State University

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Screening of phenolic compounds and antioxidant potential of grapes, wine and grape by-products

Polyphenols, bioactive secondary metabolites abundantly found in various grapevine components such as stalks, skins, and seeds, have attracted considerable attention in recent decades due to their potential health benefits. These compounds, including flavan-3-ols, flavanols, flavones, and stilbenes, are known for their antioxidant and anti-inflammatory properties.

Tools for terroir classification for the grape variety Kékfrankos

A 3-year study was carried out in order to evaluate the ecophysiology, yield and quality characteristics of Vitis vinifera L. cv. Kékfrankos (syn. Limberger) at Eger-Nagyeged hill (steep slope) and at Eger-Kőlyuktető (flat) vineyard sites located in the Eger wine region, Hungary.

Identification and quantification of molecular ellagitannins in cognac eaux-de-vie by a mass spectrometry method: barrel toasting and aging impact

Ellagitannins are the main oak wood phenolic compounds that contribute to wine and spirits organoleptic quality (color, astringency, bitterness)(1-3). Given the lack of knowledge regarding their composition and evolution in spirits, the objectives were to follow their extraction kinetic in Cognac “eaux-de-vie” matured in barrel representing different toasting and to observe their evolution and structural modifications during aging. METHODS: Eight different toasting levels were used for studying the impact of the toasting on ellagitannins composition. Two verticals (1978-2018) of “eaux-de-vie” samples coming from two terroirs were analyzed in order to observe ellagitannins evolution during aging. The above analyses were conducted using HPLC-Triple Quadrupole mass spectrometer (4) and the unknown compounds were identified by UPLC-Q-TOF, purified by preparative HPLC prior to 1D/2D-NMR analysis.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Are Farm to fork strategy goals reasonable and achievable? State of the art of Península de Setubal’s winegrowers

The European Union’s “farm to fork” strategy sets out several objectives to be achieved by farmers, who, among others, relate to increasing biodiversity, protecting soils and reducing the use of pesticides. At a time when the amendments to the national plans of Sustainable Use of pesticides are being discussed, it is important to understand what the Setúbal Peninsula region status is.