Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

Abstract

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis. Although the most widely used method of sanitizing barrels is the burning of sulfur tablets, there is a European directive that will limit this practice, even when an effective alternative has not yet been found. This research is part of a project that studies the application of cold plasma at atmospheric pressure (APCP) to sanitize oak wood staves. This alternative technology to sulfur is respectful with the environment. In this study, various fragments of staves artificially contaminated with Brettanomyces bruxellensis were exposed to the APCP device with different plasma gas and distinct plasma strengths. The results showed inactivations of 2.89 logarithmic units (of colony-forming units per milliliter) using argon for plasma generation. Absolute inactivations (5.46 log units) were reached when air or nitrogen was used for plasma generation. Nor any morphological modifications were seen on the surface of the wood after the APCP treatments. Despite the promise of these results, this line of research should be continued to solve the difficulties that may arise when treating naturally contaminated wood fragments in the wineries, as well as when facing their industrial scale.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Lucía González-Arenzana1*, Ana Sainz-García2, Ana González-Marcos2, Rodolfo Múgica-Vidal2, Ignacio Muro-Fraguas2, Rocío Escribano-Viana1, Isabel López-Alfaro1, Fernando Alba-Elías2 and Elisa Sainz-García2

Institute of Grapevine and Wine Science (ICVV). Finca La Grajera, Ctra. de Burgos Km.6 (Lo-20, salida 13), 26007 – Logroño, La Rioja Spain
Department of Mechanical Engineering. University of La Rioja. C/ San José de Calasanz 31, 26004 – Logroño, La Rioja, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Volatile compounds as indicators of terroir differentiation in Moldovan Feteasca Neagra wines

This study examined volatile compounds in Feteasca Neagra wines from seven vineyards across three PGI regions in Moldova using GC-IMS.

Recent observations in wine oxidation

The chemistry of wine oxidation is captured in the reactions between the oxidation products, mostly reactive electrophiles, with other wine constituents. An understanding of both components and their reactions can lead to ideas and techniques to control and mitigate or enhance these reactions to allow for the desired development of the wine. Current investigations are yielding much useful information about oxidation reactions in wine.

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.