Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 Cellar session 9 Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

Cold plasma at atmospheric pressure for eliminating Brettanomyces from oak wood

Abstract

In the oenological industry, the maintenance and sanitation of oak barrels has become a fundamental task. The wood has a porous structure that facilitates the penetration not only of the wine, but of the microorganisms it contains, such as the alterative yeast Brettanomyces bruxellensis. Although the most widely used method of sanitizing barrels is the burning of sulfur tablets, there is a European directive that will limit this practice, even when an effective alternative has not yet been found. This research is part of a project that studies the application of cold plasma at atmospheric pressure (APCP) to sanitize oak wood staves. This alternative technology to sulfur is respectful with the environment. In this study, various fragments of staves artificially contaminated with Brettanomyces bruxellensis were exposed to the APCP device with different plasma gas and distinct plasma strengths. The results showed inactivations of 2.89 logarithmic units (of colony-forming units per milliliter) using argon for plasma generation. Absolute inactivations (5.46 log units) were reached when air or nitrogen was used for plasma generation. Nor any morphological modifications were seen on the surface of the wood after the APCP treatments. Despite the promise of these results, this line of research should be continued to solve the difficulties that may arise when treating naturally contaminated wood fragments in the wineries, as well as when facing their industrial scale.

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Lucía González-Arenzana1*, Ana Sainz-García2, Ana González-Marcos2, Rodolfo Múgica-Vidal2, Ignacio Muro-Fraguas2, Rocío Escribano-Viana1, Isabel López-Alfaro1, Fernando Alba-Elías2 and Elisa Sainz-García2

Institute of Grapevine and Wine Science (ICVV). Finca La Grajera, Ctra. de Burgos Km.6 (Lo-20, salida 13), 26007 – Logroño, La Rioja Spain
Department of Mechanical Engineering. University of La Rioja. C/ San José de Calasanz 31, 26004 – Logroño, La Rioja, Spain

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption.

Data integration via modeling for adaptation to climate change and efficiency breeding in grapevine

Climate can greatly affect grape yield and quality (van Leeuwen et al., 2024). Growing suitable cultivars in a given region and or breed environmental resilient cultivars are essential for maintaining viticulture sustainability, particularly in the face of climate change (Wolkovich et al., 2018).

History of inorganic and isotopic signatures in Champagne over the last century: lessons

The notion of «terroir» refers to the link between the composition, quality and taste of a wine, on the one hand, and its place of origin, on the other. It involves, among other things, the signature of soil elements, as well as the influence of climatic conditions and plant material used. The composition of the wine is also influenced by the winemaking, storage and bottling processes. We were lucky enough to have a time series of the same champagne, from the end of the first world war to the present. On this exceptional time series, we followed, with the most advanced methods, all the elemental signatures by isotopic multi-dilution, the evolution of the isotopic ratios of heavy elements with very high precision of Sr, Pb, B and Cu.

Preplant fumigation only temporarily reduces Northern root-knot nematode

Management of plant-parasitic nematodes is typically focused on preplant fumigation, especially in a vineyard replant scenario. While the data are clear that this practice reduces nematodes immediately after application, which is useful in annually-cropped systems, does it have staying power in perennial cropping systems? The northern root-knot nematode Meloidogyne hapla reduces the overall lifespan and productivity of vineyards, but it does so over a long time period (slow, chronic decline). In two different commercial own-rooted V. vinifera vineyards, both undergoing vineyard replanting, we explored whether preplant fumigation reduced M. hapla densities in soils immediately after application. At one of these locations, we have explored the long-term effect of fumigation by monitoring the site for seven years post fumigation.

An overview of geological influences on South African vineyards

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.