Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Abstract

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge concerning the phenolic and aromatic profile of the Agiorgitiko varietal wines. For this study eight vineyards, from the most representative areas of the PDO Nemea zone, were selected in order to study the phenolic and aromatic potential of the variety and the heterogeneity of the wine composition among the different areas.

METHODS: Within the eight vineyards, vines were selected according to the same selection protocol. From the selected vineyards, 60 kg of grapes were harvested at the optimum technological maturity level using a defined picking protocol. Microvinifications were conducted, in triplicate, applying the same winemaking protocol. The produced wines were analyzed for their main oenological parameters and for their phenolic and volatile composition. Moreover, the wines were evaluated sensorially by a trained panel.

RESULTS: Phenolic and anthocyanidin content of wines ranged from medium to high levels in comparison to other international or Greek red varietal wines. Also, the volatile compounds concentrations presented differences among the wines (p<0.05) from different areas as also found when applying sensory evaluation of the samples. Statistical analysis of the sensory evaluation results illustrated an aromatic profile of Agiorgitiko wines composed by red fruit aroma descriptors and this was characterized for most of the wines analyzed.

CONCLUSIONS:

The present study provides a detailed approach on the characterization of the phenolic and aromatic content of Agiorgitiko wines, which is a great tool for improving the quality of the PDO Nemea wines. Also, in this study the variability of Nemea’s region pedoclimatic conditions that were depicted on wine and grape characteristics from different areas, implies the need of further research on the impact of “terroir” in Agiorgitiko wines produced from different areas.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Ioanna Xenia , Elli GOULIOTI, Nikolaos KONTOUDAKIS, Greece Yorgos KOTSERIDIS

AUA Department of FS&HN, Laboratory of Enology and Alcoholic Drinks, Athens, Greece,  

Contact the author

Keywords

Red wine phenolics, aromatic content, agiorgitiko, nemea

Citation

Related articles…

Antociani ed acidi cinnamici per la caratterizzazione di vitigni in zone diverse della Toscana

The phenolic compounds (cathechins, cynnamic acids, anthocyanidins) in wines made from 6 vine-varieties (Sangiovese, Cabernet S., Nero d’Avola, Foglia Tonda, Pinot N., Mazzese) grown in 4 different pedoclimatic zones of Tuscany (Arezzo, Grosseto, Pisa and Lucca) have been analyzed by HPLC.

Variabilité des critères de délimitation dans les AOC françaises

La délimitation de l’aire de production d’une appellation d’origine contrôlée française est une opération essentielle. Le décret-loi du 30 juillet 1935, qui a créé le système des appellations d’origine contrôlées

The role of NAC61 transcription factor in the regulation of berry ripening progression 

The undergoing global warming scenario is affecting grapevines phenology, including the timing of berry ripening and harvest date, negatively impacting production and quality. This work reports the crucial role of NAC61, a grapevine NAC transcription factor, in regulating metabolic processes occurring from the onset of ripening onwards. NAC61 high confidence targets mainly represent genes acting on stilbene biosynthesis and regulation, and in osmotic and oxidative/biotic stress-related responses. The direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, and the Botrytis cinerea susceptibility gene WRKY52, were all further validated.

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.