Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Abstract

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge concerning the phenolic and aromatic profile of the Agiorgitiko varietal wines. For this study eight vineyards, from the most representative areas of the PDO Nemea zone, were selected in order to study the phenolic and aromatic potential of the variety and the heterogeneity of the wine composition among the different areas.

METHODS: Within the eight vineyards, vines were selected according to the same selection protocol. From the selected vineyards, 60 kg of grapes were harvested at the optimum technological maturity level using a defined picking protocol. Microvinifications were conducted, in triplicate, applying the same winemaking protocol. The produced wines were analyzed for their main oenological parameters and for their phenolic and volatile composition. Moreover, the wines were evaluated sensorially by a trained panel.

RESULTS: Phenolic and anthocyanidin content of wines ranged from medium to high levels in comparison to other international or Greek red varietal wines. Also, the volatile compounds concentrations presented differences among the wines (p<0.05) from different areas as also found when applying sensory evaluation of the samples. Statistical analysis of the sensory evaluation results illustrated an aromatic profile of Agiorgitiko wines composed by red fruit aroma descriptors and this was characterized for most of the wines analyzed.

CONCLUSIONS:

The present study provides a detailed approach on the characterization of the phenolic and aromatic content of Agiorgitiko wines, which is a great tool for improving the quality of the PDO Nemea wines. Also, in this study the variability of Nemea’s region pedoclimatic conditions that were depicted on wine and grape characteristics from different areas, implies the need of further research on the impact of “terroir” in Agiorgitiko wines produced from different areas.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Ioanna Xenia , Elli GOULIOTI, Nikolaos KONTOUDAKIS, Greece Yorgos KOTSERIDIS

AUA Department of FS&HN, Laboratory of Enology and Alcoholic Drinks, Athens, Greece,  

Contact the author

Keywords

Red wine phenolics, aromatic content, agiorgitiko, nemea

Citation

Related articles…

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

Investigating the variability of basal crop coefficient across diverse production contexts in commercial vineyards

Vine water use is a critical determinant of vineyard management practices, especially in the context of climate change.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Impact of cover crop in vineyard on the musts volatile profile of Vitis vinifera L. Cv Syrah

rape aromatic characteristics are very important for the production of quality wines. The concentrations of volatile compounds in grape berries from vines with cover crops have been scarcely studied.