Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

Abstract

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge concerning the phenolic and aromatic profile of the Agiorgitiko varietal wines. For this study eight vineyards, from the most representative areas of the PDO Nemea zone, were selected in order to study the phenolic and aromatic potential of the variety and the heterogeneity of the wine composition among the different areas.

METHODS: Within the eight vineyards, vines were selected according to the same selection protocol. From the selected vineyards, 60 kg of grapes were harvested at the optimum technological maturity level using a defined picking protocol. Microvinifications were conducted, in triplicate, applying the same winemaking protocol. The produced wines were analyzed for their main oenological parameters and for their phenolic and volatile composition. Moreover, the wines were evaluated sensorially by a trained panel.

RESULTS: Phenolic and anthocyanidin content of wines ranged from medium to high levels in comparison to other international or Greek red varietal wines. Also, the volatile compounds concentrations presented differences among the wines (p<0.05) from different areas as also found when applying sensory evaluation of the samples. Statistical analysis of the sensory evaluation results illustrated an aromatic profile of Agiorgitiko wines composed by red fruit aroma descriptors and this was characterized for most of the wines analyzed.

CONCLUSIONS:

The present study provides a detailed approach on the characterization of the phenolic and aromatic content of Agiorgitiko wines, which is a great tool for improving the quality of the PDO Nemea wines. Also, in this study the variability of Nemea’s region pedoclimatic conditions that were depicted on wine and grape characteristics from different areas, implies the need of further research on the impact of “terroir” in Agiorgitiko wines produced from different areas.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Maria Ioanna Xenia , Elli GOULIOTI, Nikolaos KONTOUDAKIS, Greece Yorgos KOTSERIDIS

AUA Department of FS&HN, Laboratory of Enology and Alcoholic Drinks, Athens, Greece,  

Contact the author

Keywords

Red wine phenolics, aromatic content, agiorgitiko, nemea

Citation

Related articles…

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Cover crop management and termination timing have different effects on the maturation and water potentials of Glera (Vitis vinifera L.) in Friuli-Venezia Giulia

Inter-row soil tillage in vineyards, stimulates vigor and production due to the absence of competition for water and nutrients, however negatively affects organic matter content, soil erosion, and compaction, resulting in reduced fertility. In this study, we investigated the effects of different cover crop management approaches, including cultivation type and termination timing, on the physiological and productive responses of a Glera vineyard.
The experimental trial was conducted in Precenicco (UD) from 2019 to 2021. A commercial mixture for autumn cover cropping was sown in alternating rows, and the sowing pattern was changed each year.

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Identifying research opportunities at Douro Demarcated Region

The Douro Demarcated Region, in Northern Portugal, offers outstanding wines with unique characteristics. Due to the today’s globalized marketplace, local producers often need to further develop their cultivation techniques to remain competitive. The Association of Viticultural Development in the Douro Valley (ADVID) works as a unit of experimentation, offering services and training to meet the demands of the Douro’s vitiviniculturists.

Implication of secondary viral infections on grafting success rated in nurseries

Grapevine grafting is a complex process that since the establishment of phylloxera has become mandatory for grapevine. Grafting success in grapevine nurseries considerably varies among years and batches with most variety/rootstock combinations reach a high success rate (between 75% and 90%), but some combinations show lower success rates of around 40-50%. The causes of this variation are unknown, although biotic stresses like those caused by some viral infections have been demonstrated to affect the process. European certification schemes for the vegetative propagation of the vine include five major viruses (Arabis mosaic virus, Grapevine Fanleaf Virus, Grapevine Fleck Virus, and Grapevine-associated Leafroll Virus 1 and 3).