Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Abstract

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of grapes was not reflected in all the wines (Paladines-Quezada et al., 2021). For this reason, the aim of this work was to evaluate whether the application of two pre-harvest elicitors, MeJ and BTH on Monastrell grapes during two maturation stages, affects the composition and structure of their skin cell walls.

METHODS: This study was conducted for two years (2016 and 2017) on Vitis vinifera L. cv Monastrell, located in Jumilla (southeast Spain). A foliar application was carried out with a water suspension of 2 elicitors: (MeJ) 10 mM; (BTH) 0.3 mM, and a mixture of both. The treatments were applied at different timings of ripening (at veraison and mid-ripening). For all treatments, a second application was performed 7 days after the first application. The composition of the berry skin cell wall was analyzed.

RESULTS: MeJ and MeJ+BTH treatments applied at veraison had the greatest influence on the composition of the skin cell walls. They decreased the concentration of hemicellulose and pectic derivatives, and increased the concentration of lignin, proteins and phenols. On the other hand, BTH applied at veraison and mid-ripening was the only treatment that increased the concentration of cellulose in the skin cell walls.

CONCLUSIONS:

MeJ and MeJ+BTH treatments increased the concentration of the main components involved in cell wall strengthening. This fact can contribute to resistance to fungal attacks, but it can make it difficult to extract polyphenols from the skin during the maceration process

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego F., Paladines-Quezada ,José I. FERNÁNDEZ-FERNÁNDEZ, IMIDA Juan D. MORENO-OLIVARES, IMIDA Juan A. BLEDA-SÁNCHEZ, IMIDA Rocío GIL-MUÑOZ

 Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Ctra. La Alberca s/n, 30150. Murcia-Spain

Contact the author

Keywords

Methyl jasmonate, benzothiadiazole, veraison, mid-ripening

Citation

Related articles…

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

The terroir offers great variability in the typicity of the wines produced. Following tastings integrating several vintages, the multiple factor analysis of the sensory data revealed a group of taste criteria contributing to the notion of “Power”, referenced “Power and Harmony”, which makes it possible to differentiate wines from various terroirs of the Middle Loire Valley (Pages et al ., 1987).

Chitosan from sustainable source: antimicrobial activity against undesirable yeasts for production of low-sulphite wine

The addition of sulphur dioxide (SO2) is the method traditionally used for wine stabilisation, due to its broad spectrum of action against unwanted microorganisms and its ability to prevent oxidative phenomena.

Using RGB images and LiDAR data to characterise fruit-to-leaf ratios in grapevine collections

One of the main effects of global warming is an increase in the sugar concentration of grapes at harvest time, resulting in wines with a high alcohol content and an unbalanced structure. The fruit to leaf ratio is a key factor in determining the final sugar concentration, and training systems and management techniques can help to control this parameter.

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.