Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

Abstract

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of grapes was not reflected in all the wines (Paladines-Quezada et al., 2021). For this reason, the aim of this work was to evaluate whether the application of two pre-harvest elicitors, MeJ and BTH on Monastrell grapes during two maturation stages, affects the composition and structure of their skin cell walls.

METHODS: This study was conducted for two years (2016 and 2017) on Vitis vinifera L. cv Monastrell, located in Jumilla (southeast Spain). A foliar application was carried out with a water suspension of 2 elicitors: (MeJ) 10 mM; (BTH) 0.3 mM, and a mixture of both. The treatments were applied at different timings of ripening (at veraison and mid-ripening). For all treatments, a second application was performed 7 days after the first application. The composition of the berry skin cell wall was analyzed.

RESULTS: MeJ and MeJ+BTH treatments applied at veraison had the greatest influence on the composition of the skin cell walls. They decreased the concentration of hemicellulose and pectic derivatives, and increased the concentration of lignin, proteins and phenols. On the other hand, BTH applied at veraison and mid-ripening was the only treatment that increased the concentration of cellulose in the skin cell walls.

CONCLUSIONS:

MeJ and MeJ+BTH treatments increased the concentration of the main components involved in cell wall strengthening. This fact can contribute to resistance to fungal attacks, but it can make it difficult to extract polyphenols from the skin during the maceration process

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diego F., Paladines-Quezada ,José I. FERNÁNDEZ-FERNÁNDEZ, IMIDA Juan D. MORENO-OLIVARES, IMIDA Juan A. BLEDA-SÁNCHEZ, IMIDA Rocío GIL-MUÑOZ

 Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), Ctra. La Alberca s/n, 30150. Murcia-Spain

Contact the author

Keywords

Methyl jasmonate, benzothiadiazole, veraison, mid-ripening

Citation

Related articles…

The chances for using non-saccharomyces wine yeasts for a sustainable winemaking

Climate changes and the trend towards organic and more sustainable winemaking highlighted the need to use biological methodologies. The reduction in the use of SO2, the need of the reduction of ethanol content of wines and the now need to reduce or eliminate chemical phytosanitary products, have prompted the search for alternative practices.

Evaluation of a biological foliar fertilization system, in the production, agronomic and quality characteristics of three wine grape varieties

Evaluation of the fertility management practices in wine grape varieties production. Wine grape represents one of the most important productions in Greece with major impact to the socioeconomic characteristics of the country. The objective of this study is to evaluate, with the support of Geospatial Technologies, the potential effects of an innovative foliar fertilizer system, which is composed of three parts: a mineral fertilizer in a micronized formulation, a biostimulant as an enhancing factor of the process and, an amino acid compound (SANOVITA concept). The study was established at a collaborative, private vineyard, in the area of Trilofos-Thessaloniki, at the region of Northern Greece.

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Data mining approaches for time series data analysis in viticulture. Potential of the bliss (Bayesian functional linear regression with sparse step functions) method to identify temperature effects on yield potential

Context and purpose of the study – Vine development, and hence management, depends on dynamic factors (climate, soil moisture, cultural practices etc.) whose impact can vary depending upon their temporal modalities.

Reducing chemical use in vineyards. Evidence from the analysis of a national demonstration Network

High quantities of chemicals are applied in the vineyard for pest and disease control. Transition towards low pesticide viticulture is a key issue to improve sustainability. Winegrowers have to gradually change their practices to engage in this transition. This work aims at analysing the pesticide use evolution during transition towards low pesticide vineyards and identify some management options mobilized by winegrowers. To understand the diversity of pathways taken towards agroecological transition, we characterized different types of pesticide use evolution.