Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

Abstract

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood weight and on yield and maturity were determined with the Austrian quality vinevarieties ‘Blauburger’, ‘Blauer Burgunder’, ‘Blaufränkisch’ and ‘Riesling’ over a period of six years. Because of the annual application of 15 t/ha quality compost A+, humus content in the topsoil (0 to 30 cm) increased from 2.9 % to 3.7 % on one site and from 3.4 % to 4.1 % on the second site. The application of the annual differing amounts of 3.8 t/ha, 1.9 t/ha and 1.0 t/ha of the commercial organic fertilizer indicated no change or a slight increase of the humus content depending on the site, respectively. In the subsoil (30 to 60 cm) at no site and with no organic fertilization method significant changes of the humus content could be analyzed. At both sites significant differences between the mean values of the mineral nitrogen contents in the soil (0 to 60 cm) of all sampling dates and of all years of the three experimental variants could be determined. The mean values were 18.9 kg/ha and 41.7 kg/ha (control), respectively, 30.6 kg/ha and 44.1 kg/ha (quality compost A+), respectively, and 46.5 kg/ha and 95 kg/ha (Commercial organic fertilizer), respectively. Between the single sampling dates strong differences were recognized with the contents of mineral nitrogen in the soil depending on soil temperature and soil moisture. Depending on the grape variety and the year, the contents of yeast assimilable nitrogen and of total nitrogen in the musts increased in part significantly because of organic fertilization. On average of all grape varieties and years, nitrogen content in vine leaves of the control variant was 2.35 %. It was significantly lower than in the vine leaves of the variants quality compost A+ and commercial organic fertilizer with 2.50 % and 2.55 %, respectively. With yield, the maturity parameters and pruning wood weight significant differences between the experimental variants were recognized only in some years and with some varieties. The grapes of two varieties were microvinified and the wines organoleptically rated. With the variety ‘Blaufränkisch’ the wines from the quality compost A+ variant were rated significantly better. Whereas the application of quality compost A+ did not only positively influence the nitrogen supply of the vines, but also increased the humus content, the commercial organic fertilizer primarily contributed to the nitrogen supply of the vines.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martin Mehofer,  Austria, Bernhard, HANAK Norbert , Memish BRAHA , Christian BADER 

– Federal College and Institute for Viticulture and Pomology Klosterneuburg, Austria,Bernhard SCHMUCKENSCHLAGER Karel HANAK Norbert VITOVEC Memish BRAHA Thaci CAZIM Christian BADER Ingrid HOFSTETTER
All Co-Authors: Federal College and Institute for Viticulture and Pomology Klosterneuburg

Contact the author

Keywords

Nitrogen content in soil, humus content, nitrogen content in must, nitrogen content in leaves, yield parameters, ripeness

Citation

Related articles…

Shift of Nitrogen Resources by biotic interaction in grapevine

Grape phylloxera (Daktulosphaira vitifoliae Fitch), a monophagous pest of the grapevine, induces nodosities on the roots through its sap-sucking activity.

Influence of soil type and changes in soil solution chemistry on vine growth parameters and grape and wine quality in a central coast California vineyard

The objective of this study was to determine the influence of four soils with contrasting chemical and physical properties on vine growth parameters and wine chemistry in a Paso Robles, California Cabernet Sauvignon vineyard

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.