Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

Investigations into the effects of a commercial organic fertilizer and of quality compost on the soil and the vines

Abstract

The influences of quality compost A+ and of a commercial organic fertilizer based on dry mash from bioethanol production, blackstrap molasses, vinasse, PNC (potato nitrogen concentrate) and CSL (corn steep liquor) on the humus content, on the mineral nitrogen content in the soil, in the must and in the vine leaves, on pruning wood weight and on yield and maturity were determined with the Austrian quality vinevarieties ‘Blauburger’, ‘Blauer Burgunder’, ‘Blaufränkisch’ and ‘Riesling’ over a period of six years. Because of the annual application of 15 t/ha quality compost A+, humus content in the topsoil (0 to 30 cm) increased from 2.9 % to 3.7 % on one site and from 3.4 % to 4.1 % on the second site. The application of the annual differing amounts of 3.8 t/ha, 1.9 t/ha and 1.0 t/ha of the commercial organic fertilizer indicated no change or a slight increase of the humus content depending on the site, respectively. In the subsoil (30 to 60 cm) at no site and with no organic fertilization method significant changes of the humus content could be analyzed. At both sites significant differences between the mean values of the mineral nitrogen contents in the soil (0 to 60 cm) of all sampling dates and of all years of the three experimental variants could be determined. The mean values were 18.9 kg/ha and 41.7 kg/ha (control), respectively, 30.6 kg/ha and 44.1 kg/ha (quality compost A+), respectively, and 46.5 kg/ha and 95 kg/ha (Commercial organic fertilizer), respectively. Between the single sampling dates strong differences were recognized with the contents of mineral nitrogen in the soil depending on soil temperature and soil moisture. Depending on the grape variety and the year, the contents of yeast assimilable nitrogen and of total nitrogen in the musts increased in part significantly because of organic fertilization. On average of all grape varieties and years, nitrogen content in vine leaves of the control variant was 2.35 %. It was significantly lower than in the vine leaves of the variants quality compost A+ and commercial organic fertilizer with 2.50 % and 2.55 %, respectively. With yield, the maturity parameters and pruning wood weight significant differences between the experimental variants were recognized only in some years and with some varieties. The grapes of two varieties were microvinified and the wines organoleptically rated. With the variety ‘Blaufränkisch’ the wines from the quality compost A+ variant were rated significantly better. Whereas the application of quality compost A+ did not only positively influence the nitrogen supply of the vines, but also increased the humus content, the commercial organic fertilizer primarily contributed to the nitrogen supply of the vines.

DOI:

Publication date: September 1, 2021

Issue: Macrowine 2021

Type: Article

Authors

Martin Mehofer,  Austria, Bernhard, HANAK Norbert , Memish BRAHA , Christian BADER 

– Federal College and Institute for Viticulture and Pomology Klosterneuburg, Austria,Bernhard SCHMUCKENSCHLAGER Karel HANAK Norbert VITOVEC Memish BRAHA Thaci CAZIM Christian BADER Ingrid HOFSTETTER
All Co-Authors: Federal College and Institute for Viticulture and Pomology Klosterneuburg

Contact the author

Keywords

Nitrogen content in soil, humus content, nitrogen content in must, nitrogen content in leaves, yield parameters, ripeness

Citation

Related articles…

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Viticultural practices: past, present and future

Practices in viticulture have greatly evolved in the last five decades. There were three objectives: improvement in the quality of the products, reduction in the production costs through mechanization

Effect of irrigation in cover cropping vineyards

Cover cropping in vineyard is a sustainable and alternative soil management system to conventional tillage that is gaining more and more importance among winegrowers and is being promoted, among other organizations, by the European Union through the eco-schemes of the Common Agricultural Policy.
However, the use of cover crops in Mediterranean viticultural environments is conditioned, to a large extent, by the availability of irrigation water which, in a context of global warming like the one we are experiencing, must be adjusted to savings strategies, supplying to the vine only what it needs in each moment.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).