Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Abstract

AIM: Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon, Merlot, and especially Shiraz. Techniques to ameliorate effects of cell death and berry shrinkage are limited. Pinolene and kaolin are two types of film-forming antitranspirants applied to plants to reduce water loss. If these antitranspirants create a water impermeable coating, they may also restrict gas exchange, exacerbating hypoxia associated with cell death in grape berries. This study aimed to identify the effects on berry physiology during ripening of kaolin and pinolene coatings on Shiraz and Grenache bunches.

METHODS: Kaolin (6% w/w), pinolene (1% w/w) and water (control) were sprayed on Shiraz and Grenache bunches (2019-2020, Waite campus University of Adelaide) during ripening every 7 to 15 days. Change in berry mass, cell vitality, internal oxygen concentration, ethanol accumulation and bunch and canopy temperature were recorded.

RESULTS: Grenache berries had almost no shrinkage and no cell death during development contrasting to continuous decline in berry mass and cell vitality in Shiraz berries from 85 days after anthesis. Kaolin had no effects on berry properties. Pinolene reduced loss of berry mass in Shiraz and slightly increased berry mass in Grenache, leading to lower sugar concentrations in both cultivars. There was no effect of pinolene on berry oxygen concentration or cell vitality since both declined similarly to controls. There was an exponential increase in berry ethanol concentration with increasing mean daily temperature. Berry ethanol concentration for Grenache was much lower than for Shiraz under similar temperature conditions. There was no effect of treatments on berry ethanol concentrations.

CONCLUSIONS

Pinolene decreased berry shrinkage and prevented high sugar concentration presumably by reducing transpiration without impacting sugar content. It was surprising that this compound could decrease water loss without apparently affecting internal oxygen concentration in the berry. Ethanol accumulation during berry ripening could be a causative factor of cell death or is closely associated with it. Temperature may decrease berry vitality by accelerating respiration which leads to anoxia and high ethanol production.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lishi Cai

School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia,Apriadi Situmorang School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia Steve Tyerman School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

shiraz, grenache, berry cell death, kaolin, pinolene (di-1-p-menthene), ethanol, oxygen

Citation

Related articles…

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.

Infrared spectroscopy investigation of fresh grapevine organs for clustering and classification.

The spectral information acquired from fresh whole grapevine organs have yet to be fully explored. Infrared spectroscopy provides the means to rapidly measure fresh plant material and providing extensive information on the physical and chemical structure of samples.

VitiProtect–Development and testing of a downy mildew AI forecasting model for Swiss viticulture

Downy mildew (Plasmopara viticola) is a fungal pathogen that causes a destructive disease in grapevines (Vitis vinifera).

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.

INFLUENCE OF THE NITROGEN / LIPIDS RATIO OF MUSTS ON THE REVELATION OF AROMATIC COMPOUNDS IN SAUVIGNON BLANC WINE

Production of volatile compounds by yeast is known to be modulated by must nitrogen. Nevertheless, various parameter of must quality have an impact on yeast fermentation. In this study we propose to evaluate the impact of nitrogen / lipids balance on a Sauvignon Blanc grape juice (Val de Loire).
Must was prepared from the same grapes at pilot scale. Three modalities were carried out: direct pressing, direct pressing with a pre-fermentation cold stabulation and pellicular maceration before pressing.