Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Abstract

AIM: Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon, Merlot, and especially Shiraz. Techniques to ameliorate effects of cell death and berry shrinkage are limited. Pinolene and kaolin are two types of film-forming antitranspirants applied to plants to reduce water loss. If these antitranspirants create a water impermeable coating, they may also restrict gas exchange, exacerbating hypoxia associated with cell death in grape berries. This study aimed to identify the effects on berry physiology during ripening of kaolin and pinolene coatings on Shiraz and Grenache bunches.

METHODS: Kaolin (6% w/w), pinolene (1% w/w) and water (control) were sprayed on Shiraz and Grenache bunches (2019-2020, Waite campus University of Adelaide) during ripening every 7 to 15 days. Change in berry mass, cell vitality, internal oxygen concentration, ethanol accumulation and bunch and canopy temperature were recorded.

RESULTS: Grenache berries had almost no shrinkage and no cell death during development contrasting to continuous decline in berry mass and cell vitality in Shiraz berries from 85 days after anthesis. Kaolin had no effects on berry properties. Pinolene reduced loss of berry mass in Shiraz and slightly increased berry mass in Grenache, leading to lower sugar concentrations in both cultivars. There was no effect of pinolene on berry oxygen concentration or cell vitality since both declined similarly to controls. There was an exponential increase in berry ethanol concentration with increasing mean daily temperature. Berry ethanol concentration for Grenache was much lower than for Shiraz under similar temperature conditions. There was no effect of treatments on berry ethanol concentrations.

CONCLUSIONS

Pinolene decreased berry shrinkage and prevented high sugar concentration presumably by reducing transpiration without impacting sugar content. It was surprising that this compound could decrease water loss without apparently affecting internal oxygen concentration in the berry. Ethanol accumulation during berry ripening could be a causative factor of cell death or is closely associated with it. Temperature may decrease berry vitality by accelerating respiration which leads to anoxia and high ethanol production.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lishi Cai

School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia,Apriadi Situmorang School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia Steve Tyerman School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia

Contact the author

Keywords

shiraz, grenache, berry cell death, kaolin, pinolene (di-1-p-menthene), ethanol, oxygen

Citation

Related articles…

Screening sensory-directed methodology for the selection of non-saccharomyces wine yeasts based on perceived aroma quality

The present work contributes by developing a rapid sensory-directed methodology for the screening and selection of high quality wines with different sensory profiles Therefore, Verdejo and Tempranillo musts were fermented with 50 different yeasts each under controlled laboratory conditions. Resulting samples were firstly categorized according to five levels of quality by a panel of wine professionals (Sáenz-Navajas, Ballester et al. 2013). Higher quality samples were described by flash profiling by a semi-trained panel
(Valentin, Chollet et al. 2012) and most distinctive samples were screened by gas chromatography-olfactometry (GC-O) (López, Aznar et al. 2002).

Comparison between the volatile chemical profile of two different blends for the enhancement of  “Valpolicella Superiore”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack.

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

The effect of soil and climate on the character of Sauvignon blanc wine

Un projet multidisciplinaire sur l’effet du sol et du climat sur la qualité du vin a débuté en Afrique du Sud il y a 5 ans. Des mesures sont effectuées sous culture sèche dans des vignes de Sauvignon Blanc dans six localités différentes, cinq dans le district de Stellenbosch et une à Durbanville.