Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

Within-vineyard spatial variation impacts methoxypyrazine accumulation in the rachis of Cabernet-Sauvignon

Abstract

AIM: To investigate the impact of spatial variation in vine vigour on the accumulation of methoxypyrazines in the rachis of Cabernet-Sauvignon. Cabernet-Sauvignon rachis has been shown to contain significantly higher concentrations of 3-isobutyl-2-methoxypyrazine (IBMP) than that found in berry material. IBMP is readily extracted from rachis during fermentation and can impact the flavour profile of the produced wine1.

METHODS: Cabernet-Sauvignon vines (n = 105) grown on common rootstocks in Coonawarra, South Australia, were georeferenced and 6 bunches were harvested from each vine at maturity in 2020. Berries were removed and the rachis was analysed for IBMP by GC-MS/MS. Pruning weights were recorded as an indicative measure of vegetative growth over the past season. Visualisation and analysis of map layers was achieved through linear regression models and k-means clustering with the Precision Agriculture Tools plugin2 for QGIS software suite3.

RESULTS: Georeferenced maps of vine vigour and IBMP concentration in rachis showed similar spatial variance and a clear relationship between the two variables was evident across the vineyard. k-Means clustering revealed 3 distinct zones identified as high, medium, or low in both IBMP levels and vine vigour. Although rootstock influenced vine vigour, rootstock effects were much less than the variation in vine vigour caused by inherent vineyard variability, most likely variation in soil depth4. Linear regression between vine vigour and IBMP in rachis showed a statistically significant relationship (p < 0.001) and highlighted increases in vine vigour, which increased canopy size and decreased porosity, resulted in an increase of IBMP in rachis.

CONCLUSIONS

Vine vigour significantly correlates with IBMP in Cabernet-Sauvignon rachis. Their similar patterns of within-vineyard variation provide opportunities for grape growers to implement targeted management of vineyards in a zonal fashion.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ross Sanders

Ross, SANDERS, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, and Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food,Paul, BOSS, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, and Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide Dimitra, CAPONE, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide Catherine, KIDMAN, Wynns Coonawarra Estate Rob, BRAMLEY, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food David, JEFFERY, Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

coonawarra, georeferenced, ibmp, rootstock, vigour

Citation

Related articles…

Vine growing description of Aeolian archipelago

An agroclimatic description of Aeolian archipelago viticulture area (Me), Italy is presented. Aeolian archipelago is located off the northeastern coast of Sicily and it includes the islands of Alicudi, Filicudi, Salina, Panarea, Lipari, Stromboli and Vulcano.

Analysis of mousy off-flavour wines

Winemakers are increasingly experimenting with new techniques, such as spontaneous fermentation, prolonged yeast contact, higher pH, minimal sulphur dioxid, filtration and clarification or oxidative ageing. Along with this, the risk of microbial spoilage increases, and so the off-flavour mousiness, long time underestimated, is becoming more frequent. Characteristic of the mousy off-flavour is the delayed perception after swallowing the wine. After a few seconds the flavour appears, reminiscent of a dirty mouse cage. There are three known compounds that cause mousy off-flavor: 2-ethyltetrahydropyridine, 2-acetyltetrahydopyridine, and 2-acetylpyrroline. Yeasts such as Dekkera/Brettanomyces and heterofermentative lactic acid bacteria like Lactobacillus hilgardii can release these compounds.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

Viticultural zoning of central chile based on bioclimatic indexes and the impact of climate warming

Climate is considered one of the main factors that determines the aptitude of a specific location for growing grapes and producing high quality wine, being in that sense one of the main elements defining the concept of terroir