Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Evaluation of glutathione content in four white varieties in the d.o. Ca. Rioja (Spain)

Abstract

AIM: Glutathione is a tripeptide that is mainly found in reduced form in grapes. It generates during the maturation of the grape, increasing significantly after veraison [1]. It plays a relevant role in the prevention of oxidative processes due to its high antioxidant activity. Its content in the grape is influenced by many factors (variety, vintage, cultural practices, nitrogen nutrition …) [2]. In musts and wines, it undergoes modifications due to oxygen exposure, tyrosinase activity, maceration time, pressing, yeast strain…[3]. The aim of this work was to evaluate the content of glutathione in the grape of four white varieties: Tempranillo Blanco, Maturana Blanca, Garnacha Blanca and Viura.

METHODS: The study was carried out during three seasons (2017, 2018 and 2019) in a vineyard located in the D.O.Ca. Rioja (Spain). On the other hand, the influence of different vineyard locations on the content of this compound in the indicated varieties was also analyzed. Glutathione determination was carried out by HPLC by automatic derivatization in precolumn with OPA. The previous extraction in the grape was carried out with HCl/EDTA [4].

RESULTS: The results obtained showed important varietal differences in the glutathione content of the grape in the white varieties studied. The highest concentration was obtained in the Tempranillo Blanco variety, although without significant differences in comparison to Viura, while the lowest levels corresponded to Maturana Blanca and Garnacha Blanca. Also, the characteristics of the vintage also influenced its concentration, although the varietal differences were maintained. The location of the vineyard showed a variable effect depending on the vinifera, and the characteristics of the vintage in the case of Tempranillo Blanco.

CONCLUSIONS

These results confirm that the variety is one of the most influential factors in the glutathione content in grapes. Tempranillo Blanco has high levels of this compound, which can help preserve the quality of your wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Juana Martinez

Instituto De Ciencias De La Vid Y Del Vino (Gobierno De La Rioja, Csic, Universidad De La Rioja),Laura, Alti, Instituto De Ciencias De La Vid Y Del Vino (Gobierno De La Rioja, Csic, Universidad De La Rioja)  Sara, Garcia, Instituto De Ciencias De La Vid Y Del Vino (Gobierno De La Rioja, Csic, Universidad De La Rioja) Elisa, Baroja, Instituto De Ciencias De La Vid Y Del Vino (Gobierno De La Rioja, Csic, Universidad De La Rioja)

Contact the author

Keywords

glutathione, grape, white varieties, location, season

Citation

Related articles…

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.