Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Abstract

AIM: Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile (SAG, 2019). Casablanca Valley, one of the most important area for the production of white wines in Chile is located approximately to 35-40 km from the Pacific Ocean. Still, geographical area and the clone utilized could be decisive for the chemical and sensory characteristics of this type of wine (Duchene et al., 2009; Green et al., 2011), both during ripening and during ageing of wine. For this reason, the aim of this work is to study the concentration and composition of phenolic compounds and organic acids throughout ripening in grape skins of Sauvignon blanc clones grown in two zones of Casablanca Valley.

METHODS: Sauvignon blanc clones 242, 1 Davis and 107 grown in two zones of the Casablanca Valley, central zone of Chile were chosen. The grape berries were sampled every 15 days from veraison until commercial harvest, using a completely randomized design with five replicates in each selected vineyard. The following chemical analyses were assessed: titratable acidity, total soluble solids, total phenols, CIELab coordinates, low molecular weight phenolic profile and organic acids using High Performance Liquid Chromatography (HPLC-DAD).

RESULTS: As expected, titratable acidity diminished during ripening while total soluble solids and pH increased in all clones. Total phenols decreased in all clones during ripening, with significant differences in their concentration between the two geographical zones. Low molecular weight phenolic compounds showed differences in concentration between Sauvignon blanc clones and geographical origin showed that the grapes grown in the zone more closed to the Pacific Ocean had a higher concentration of flavonols, while organic acids differed in concentration but not in composition between clones and geographical origin.

CONCLUSIONS

We observed differences in concentration on some chemical parameters between Sauvignon blanc clones that depends on the geographical origin, while its composition remains similar.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alejandro Cáceres

Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.,Pierina Peirano Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.

Contact the author

Keywords

Sauvignon blanc, flavonols, organic acids, cool-climate wines

Citation

Related articles…

How does aromatic composition of red wines, resulting from varieties adapted to climate change, modulate fruity aroma?

One of the major issues for the wine sector is the impact of climate change linked to the increasing temperatures which affects physicochemical parameters of the grape varieties planted in Bordeaux vineyard and consequently, the quality of wine. In some varietals, the attenuation of their fresh fruity character is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive strategy on climate change, some winegrowers have initiated changes in the Bordeaux blend of vine varieties [2]. This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

Recovery and purification of proteins from grape seed byproducts using proteomic and separative techniques

Grape seeds account for around 5% of the weight of the whole grape berry, representing approximately 40%-50% of the solid by-products that the different wine industries generate during the winemaking process.

Influence of soil type on juice quality in a vineyard from DO Ca Rioja

Soil plays an important role in wine quality, especially its water holding capacity because it affects the balance between vigour and grape yield. The aim of this work was to study the influence of different soil types on the must quality in a vineyard at DO Ca Rioja

Modification on grape phenolic and aromatic composition due to different leafroll virus infections

Viral diseases are reported to cause several detrimental effects on grapevine. Among them, leafroll, due to single or mixed infection of GLRaV1 and GLRaV3, and rugose wood, associated to GVA, are considered the most widespread and dangerous.

Implementing VIS-NIR spectroscopy as a rapid and non-intrusive technique for assessing anthocyanin and phenolic concentrations in Vitis vinifera L. Grenache whole grape berries

Anthocyanins and phenolic compounds play a crucial role in winemaking, contributing to the profile, flavor, color, texture, and stability of wine. Grape clusters, specifically Vitis vinifera L. cv. Grenache, were handpicked from a commercial vineyard sited in Tudelilla, La Rioja, Spain (42°18′ 52.26″, Long. -2°7′ 59.15″, Alt. 582 m) on five distinct dates from veraison to harvest during the 2015 season. Non-contact spectral measurements were conducted on intact grape berries using a VIS-NIR spectrometer operating in the 570 – 1000 nm spectral range under controlled laboratory conditions, positioned at a distance of 25 cm from the berries. The quantification of 16 anthocyanins and phenols in 120 grape clusters was performed using HPLC, established as the reference method for validating the spectral tool.