Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Abstract

AIM: Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile (SAG, 2019). Casablanca Valley, one of the most important area for the production of white wines in Chile is located approximately to 35-40 km from the Pacific Ocean. Still, geographical area and the clone utilized could be decisive for the chemical and sensory characteristics of this type of wine (Duchene et al., 2009; Green et al., 2011), both during ripening and during ageing of wine. For this reason, the aim of this work is to study the concentration and composition of phenolic compounds and organic acids throughout ripening in grape skins of Sauvignon blanc clones grown in two zones of Casablanca Valley.

METHODS: Sauvignon blanc clones 242, 1 Davis and 107 grown in two zones of the Casablanca Valley, central zone of Chile were chosen. The grape berries were sampled every 15 days from veraison until commercial harvest, using a completely randomized design with five replicates in each selected vineyard. The following chemical analyses were assessed: titratable acidity, total soluble solids, total phenols, CIELab coordinates, low molecular weight phenolic profile and organic acids using High Performance Liquid Chromatography (HPLC-DAD).

RESULTS: As expected, titratable acidity diminished during ripening while total soluble solids and pH increased in all clones. Total phenols decreased in all clones during ripening, with significant differences in their concentration between the two geographical zones. Low molecular weight phenolic compounds showed differences in concentration between Sauvignon blanc clones and geographical origin showed that the grapes grown in the zone more closed to the Pacific Ocean had a higher concentration of flavonols, while organic acids differed in concentration but not in composition between clones and geographical origin.

CONCLUSIONS

We observed differences in concentration on some chemical parameters between Sauvignon blanc clones that depends on the geographical origin, while its composition remains similar.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alejandro Cáceres

Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.,Pierina Peirano Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.

Contact the author

Keywords

Sauvignon blanc, flavonols, organic acids, cool-climate wines

Citation

Related articles…

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Vitis vinifera Manseng noir is an alternative red variety for low alcohol wines of strong structure and soft tannins

In 2019, we have planted the red variety Manseng Noir, as it has been shown that it is the only sister of the Tannat grape. Tannat was introduced to Uruguay in 1870 from the south-western regions of France.

Grapevine rootstock field evaluation under drought and saline condition in California

Climate change impacts grape production worldwide and in California drought and salinity became increasingly challenging for grape growers to maintain sustainable production and fruit quality.

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.