Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Abstract

AIM: Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile (SAG, 2019). Casablanca Valley, one of the most important area for the production of white wines in Chile is located approximately to 35-40 km from the Pacific Ocean. Still, geographical area and the clone utilized could be decisive for the chemical and sensory characteristics of this type of wine (Duchene et al., 2009; Green et al., 2011), both during ripening and during ageing of wine. For this reason, the aim of this work is to study the concentration and composition of phenolic compounds and organic acids throughout ripening in grape skins of Sauvignon blanc clones grown in two zones of Casablanca Valley.

METHODS: Sauvignon blanc clones 242, 1 Davis and 107 grown in two zones of the Casablanca Valley, central zone of Chile were chosen. The grape berries were sampled every 15 days from veraison until commercial harvest, using a completely randomized design with five replicates in each selected vineyard. The following chemical analyses were assessed: titratable acidity, total soluble solids, total phenols, CIELab coordinates, low molecular weight phenolic profile and organic acids using High Performance Liquid Chromatography (HPLC-DAD).

RESULTS: As expected, titratable acidity diminished during ripening while total soluble solids and pH increased in all clones. Total phenols decreased in all clones during ripening, with significant differences in their concentration between the two geographical zones. Low molecular weight phenolic compounds showed differences in concentration between Sauvignon blanc clones and geographical origin showed that the grapes grown in the zone more closed to the Pacific Ocean had a higher concentration of flavonols, while organic acids differed in concentration but not in composition between clones and geographical origin.

CONCLUSIONS

We observed differences in concentration on some chemical parameters between Sauvignon blanc clones that depends on the geographical origin, while its composition remains similar.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alejandro Cáceres

Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.,Pierina Peirano Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.

Contact the author

Keywords

Sauvignon blanc, flavonols, organic acids, cool-climate wines

Citation

Related articles…

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise

Advancing grapevine science through genomic research

The seminar will examine the complexities and prospects of genomic research on Vitis species, characterize by exceptionally high heterozygosity and common interspecific gene flow. The seminar will showcase case studies highlighting the critical role of diploid genome references in grape research, specifically in areas such as aroma development, disease resistance, and domestication traits. It will also address the emerging focus on pangenomes within the Vitis genus, particularly in the context of genetic studies on naturally interbreeding populations.