Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Chemical composition of cool-climate Sauvignon blanc grape skins clones during ripening

Abstract

AIM: Sauvignon blanc is the most important variety in cool valleys in central Chile accounting 15,522 ha which corresponds to 42.4% of the cultivated surface with white varieties in Chile (SAG, 2019). Casablanca Valley, one of the most important area for the production of white wines in Chile is located approximately to 35-40 km from the Pacific Ocean. Still, geographical area and the clone utilized could be decisive for the chemical and sensory characteristics of this type of wine (Duchene et al., 2009; Green et al., 2011), both during ripening and during ageing of wine. For this reason, the aim of this work is to study the concentration and composition of phenolic compounds and organic acids throughout ripening in grape skins of Sauvignon blanc clones grown in two zones of Casablanca Valley.

METHODS: Sauvignon blanc clones 242, 1 Davis and 107 grown in two zones of the Casablanca Valley, central zone of Chile were chosen. The grape berries were sampled every 15 days from veraison until commercial harvest, using a completely randomized design with five replicates in each selected vineyard. The following chemical analyses were assessed: titratable acidity, total soluble solids, total phenols, CIELab coordinates, low molecular weight phenolic profile and organic acids using High Performance Liquid Chromatography (HPLC-DAD).

RESULTS: As expected, titratable acidity diminished during ripening while total soluble solids and pH increased in all clones. Total phenols decreased in all clones during ripening, with significant differences in their concentration between the two geographical zones. Low molecular weight phenolic compounds showed differences in concentration between Sauvignon blanc clones and geographical origin showed that the grapes grown in the zone more closed to the Pacific Ocean had a higher concentration of flavonols, while organic acids differed in concentration but not in composition between clones and geographical origin.

CONCLUSIONS

We observed differences in concentration on some chemical parameters between Sauvignon blanc clones that depends on the geographical origin, while its composition remains similar.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alejandro Cáceres

Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.,Pierina Peirano Faculty of Agronomic and Food Sciences, Pontificia Universidad Católica de Valparaíso, Chile.

Contact the author

Keywords

Sauvignon blanc, flavonols, organic acids, cool-climate wines

Citation

Related articles…

Iso-/anisohydric behavior in wine grapes may be a matter of soil moisture

There are claims that wine grape cultivars are either isohydric or anisohydric; the former maintaining, and the latter decreasing, their plant water status as soil moisture declines. However, available information is inconsistent. There are those that show an existence of a continuum in cultivar response to soil moisture rather than a distinct categorization. Others even show both behaviors in the same cultivar grown in different environments. In this study we investigated the behavior of 30 own rooted Vitis vinifera cultivars during successive drydown and rewatering cycles over two growing seasons in arid eastern Washington (<200 mm annual precipitation).

A first look at the aromatic profile of “Monferace” wines

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1).

Assessment of climate change impacts on water needs and growing cycle on grapevine in three DOs of NE Spain

This study assessed the suitability of grapevine growing in three DOs (Empordà, Pla de Bages and Penedès) of Catalonia (NE Spain) over the 21st century. For this purpose, an estimation of water needs and agroclimatic and phenological indicators was made. Climate change impacts were estimated at 1 km pixel resolution using temperature and precipitation projections from several general circulation models (GCM) and two climate change scenarios: RCP 4.5 (stabilization scenario) and RCP 8.5 (worst-case scenario). Potential crop evapotranspiration (following FAO procedure) and a daily water balance considering soil water holding capacity were used to estimate actual evapotranspiration of vines and, finally, water needs. Dynamics would be similar in the three DOs studied although the magnitude of impact differs. Water needs would be 2 and 3 times greater (ranging from 0 to more than 1500 m3/ha) than current water needs at both climate change scenarios. Moreover, blooming date would advance from 3 to 6 weeks, harvest date from 1 to 2.5 months, resulting in growing cycles from 10 to 80 days shorter. It should also be noted that frost risk would decrease from 6 to 76%, the number of days with temperatures above 30ºC during ripening would rise from 48 to 500% and tropical nights (minimum temperature >20ºC) at ripening would increase from 28 to 150%, depending on the scenario and the DOs. The impacts of climate change in the three DOs could result in significant limitations for grapevine cultivation and wine production if adaptive strategies are not applied. This result could serve as a basis for the design of specific and particular adaptation strategies to improve and maintain vineyards in the DOs studied and could be extrapolated to similar DOs and regions.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.