Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Application of treatments to delay the ripening of grape varieties cultivated in valpolicella

Application of treatments to delay the ripening of grape varieties cultivated in valpolicella

Abstract

AIM: Winegrape cultivars are particularly sensitive to temperature and recent changes in climate have advanced the onset of berry ripening, resulting in unbalanced fruit composition at harvest. High temperatures during ripening result in berries with increased sugar concentration, reduced acidity and colour and unwanted or underdeveloped aroma compounds. To reduce the negative effects of climate change, several adaptation strategies, represented especially by viticultural practices, have been proposed. In this work we tested and compared the effect of two different treatments aimed to delay ripening of the most important grape varieties cultivated in Valpolicella (Verona, Italy).

METHODS: Clusters of Corvina and Corvinone, cultivated in Valpolicella, cordon trained, cane pruned, were treated one week before veraison with 1-Naphthaleneacetic acid (NAA), a synthetic auxin. On another block of vines of the same cultivars in the same vineyard, a postveraison defoliation treatment was applied, with the effect of removing about 30-40% of the leaves thus creating a vertical window without leaves above the bunch area. The dynamic of the main ripening parameters was monitored over the course of maturation and yield and yield components were determined at harvest.

RESULTS:Leaf removal had a very limited effect on delaying the accumulation of sugars in berries, which was the main scope of the trial, compared to berries from untreated vines. On the other hand, the NAA treatment greatly impacted the ripening dynamic of both varieties, postponing the accumulation of sugars and anthocyanins and the decrease in acidity. The effect was more pronounced in Corvinone than in Corvina.

CONCLUSIONS

The results evidenced that a relevant delay of ripening time can be obtained by treating clusters of the main grape varieties cultivated in Valpolicella with auxin-based products. On the contrary, the leaf defoliation treatment only weakly affected the ripening dynamics, possibly due to the remobilization of reserves from the perennial organs of the plant.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Giovanni Battista Tornielli 

University of Verona, Ron SHMULEVIZ, University of Verona

Contact the author

Keywords

climate change, valpolicella, ripening, auxin, defoliation

Citation

Related articles…

Effect of rootstock and preplant fumigation on plant parasitic nematode development in Washington wine grapes

In Washington State, the majority of winegrape (Vitis vinifera) vineyards are planted to their own roots. This practice is possible due to the lack of established phylloxera populations, and is preferred due to the ease of retraining after damaging winter cold events. However, own-rooted V. vinifera is generally susceptible to most plant parasitic nematodes that attack grape. In Washington State, management of nematodes is dominated by preplant soil fumigation. One practice that may mitigate economic loss due to nematodes is the adoption of nematode-“resistant” rootstocks.

A first look at the aromatic profile of “Monferace” wines

Grignolino, is a native Piedmont grape variety which well represents the historical and
enological identity of Monferrato, a territory between Asti and Casale Monferrato, included in the World Heritage List designated by UNESCO (1).

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.