Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Preliminary results on the effect of different organic mulching on wine polyphenol content

Preliminary results on the effect of different organic mulching on wine polyphenol content

Abstract

AIM: Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations. However, little information is known about the influence of soil mulching on grape and wine phenolic composition. For this reason, the study aimed to analyze the effect of different mulchings and soil management tecnhiques on the wine phenolic profile (phenolic acids, flavanols, flavonols, stilbenes, and anthocyanins) on ‘Tempranillo’ grapevine (Vitis vinifera L.).

METHODOLOGY: The research was carried out in two different fields, one located in Logroño and the other in Aldeanueva de Ebro (La Rioja, Spain), each one characterized by different soil conditions, weather and crop management techniques (conventional in Aldeanueva de Ebro and ecological in Logroño). In both sites, five diferent mulching techniques were applied in the row: grapevine pruning debris (GPD), spent mushroom compost (SPCH), straw (S), interow (I) and herbicide (H) treatment. Each treatment was performed in triplicate (n=3) and each replicate was vinified separately. Wine phenolic composition was analyzed by UHPLC-DAD-ESI/APCI-MS/MS.

RESULTS: Overall, in this first year of the study, mulching treatments led to only few differences between wines and the phenolic composition of the treatments was not the same across the fields. In Logroño, wines from the I treatment had higher concentration of flavonols than wines from H, while no significant differences were observed between wines for the remaining parameters. In Aldeanueva de Ebro, no significant differences were observed between treatments for any parameter, although wines from SPCH treatment tended to have fewer polyphenols. Although no statistical differences were observed between treatments, it is interesting to see that in Aldeanueva, phenolic composition increased for all groups (fewer stilbenes). Indeed it is necessary to investigate more deeply this behavior. Among other factors, this differences between fields could be due to different crop management tecnhiques.

CONCLUSIONS

In conclusion, mulching treatments had no significant effect on wine phenolic composition in the first year of the study. However, mulching treatments do not have immediate effect and probably their influence could become more significant in the following years. Therefore, further research should be performed in order to assess the long-term effects of these treatments on wine phenolic composition.

 

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andreu Mairata

Department of Viticulture, Institute of Vine and Wine Sciences (Gobierno de la Rioja, CSIC, Universidad de La Rioja), Logroño, La Rioja, Spain),Javier, PORTU. Institute of Vine and Wine Sciences (La Rioja, Spain) Juana, MARTÍNEZ. Institute of Vine and Wine Sciences (La Rioja, Spain) Luis, RIVACOBA. Institute of Vine and Wine Sciences (La Rioja, Spain) Enrique, GARCÍA-ESCUDERO. Institute of Vine and Wine Sciences (La Rioja, Spain) Alicia, POU. Institute of Vine and Wine Sciences (La Rioja, Spain) David, LABARGA. Institute of Vine and Wine Sciences (La Rioja, Spain)

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Citation

Related articles…

Try the GiESCO EcoMetaEthical Charter !

The sustainability of vineyards is a major issue. The choices proposed to date have major flaws such as the lack of scientific bases or the use of dangerous products such as copper. GiESCO has published a charter of best practices for the environment and for people adapted to various environments. The use of sustainably resistant grape varieties that produce quality wines plays a central role here. Often innovative cultivation systems associated with new technologies and based on scientific bases, guarantee respect for people and the environment. These proposals are brought together in a charter which is part of a meta-ethical approach to seeking consensual measures to ensure the sustainability of vineyards.

Opportunities and challenges in the adoption of new grape varieties by producers: A case study from the Northeastern United

Grape breeding for resistance to fungal diseases is today very dynamic throughout the world notably in France. New varieties are obtained by hybridization between susceptible varieties of the vitis vinifera species and resistant genotypes, with breeding programs generally lasting between 15 and 25 years and resulting in the registration of a few new varieties. Though these varieties can provide several benefits and can be planted by winegrowers, they are not always systematically adopted.

Nitrogen – Lipid Balance in alcoholic fermentations. Example of Champagne musts

Nutrient availability – nitrogen, lipids, vitamins or oxygen – has a major impact on the kinetics of winemaking fermentations. Nitrogen is usually the growth-limiting nutrient and its availability determines the fermentation rate, and therefore the fermentation duration. In some cases, in particular in Champagne, grape musts have high nitrogen concentrations and are sometimes clarified with turbidity below 50 NTU. In these conditions, lipid deficiencies may occur and longer fermentations can be observed. To better understand this situation, a study was realized using a synthetic medium simulating the composition of a Champagne must : 180 g/L of sugar, 360 mg/L of assimilable nitrogen and a lipid content ranging from 1 to 8 mg/L of phytosterols (mainly β-sitosterol).

Intra-block variations of vine water status in time and space

Vine water status was measured on 96 plots of three vines inside a vineyard block of 0.28 ha during three years: 2003, 2004 and 2005. Three physiological indicators were implemented: stem water potential, carbon isotope discrimination measured on grape sugars at ripeness (δ13C) and canopy temperature measured by high resolution remote sensing. For stem water potential, measurements were taken on every single vine of each plot.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).