Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Preliminary results on the effect of different organic mulching on wine polyphenol content

Preliminary results on the effect of different organic mulching on wine polyphenol content

Abstract

AIM: Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations. However, little information is known about the influence of soil mulching on grape and wine phenolic composition. For this reason, the study aimed to analyze the effect of different mulchings and soil management tecnhiques on the wine phenolic profile (phenolic acids, flavanols, flavonols, stilbenes, and anthocyanins) on ‘Tempranillo’ grapevine (Vitis vinifera L.).

METHODOLOGY: The research was carried out in two different fields, one located in Logroño and the other in Aldeanueva de Ebro (La Rioja, Spain), each one characterized by different soil conditions, weather and crop management techniques (conventional in Aldeanueva de Ebro and ecological in Logroño). In both sites, five diferent mulching techniques were applied in the row: grapevine pruning debris (GPD), spent mushroom compost (SPCH), straw (S), interow (I) and herbicide (H) treatment. Each treatment was performed in triplicate (n=3) and each replicate was vinified separately. Wine phenolic composition was analyzed by UHPLC-DAD-ESI/APCI-MS/MS.

RESULTS: Overall, in this first year of the study, mulching treatments led to only few differences between wines and the phenolic composition of the treatments was not the same across the fields. In Logroño, wines from the I treatment had higher concentration of flavonols than wines from H, while no significant differences were observed between wines for the remaining parameters. In Aldeanueva de Ebro, no significant differences were observed between treatments for any parameter, although wines from SPCH treatment tended to have fewer polyphenols. Although no statistical differences were observed between treatments, it is interesting to see that in Aldeanueva, phenolic composition increased for all groups (fewer stilbenes). Indeed it is necessary to investigate more deeply this behavior. Among other factors, this differences between fields could be due to different crop management tecnhiques.

CONCLUSIONS

In conclusion, mulching treatments had no significant effect on wine phenolic composition in the first year of the study. However, mulching treatments do not have immediate effect and probably their influence could become more significant in the following years. Therefore, further research should be performed in order to assess the long-term effects of these treatments on wine phenolic composition.

 

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Andreu Mairata

Department of Viticulture, Institute of Vine and Wine Sciences (Gobierno de la Rioja, CSIC, Universidad de La Rioja), Logroño, La Rioja, Spain),Javier, PORTU. Institute of Vine and Wine Sciences (La Rioja, Spain) Juana, MARTÍNEZ. Institute of Vine and Wine Sciences (La Rioja, Spain) Luis, RIVACOBA. Institute of Vine and Wine Sciences (La Rioja, Spain) Enrique, GARCÍA-ESCUDERO. Institute of Vine and Wine Sciences (La Rioja, Spain) Alicia, POU. Institute of Vine and Wine Sciences (La Rioja, Spain) David, LABARGA. Institute of Vine and Wine Sciences (La Rioja, Spain)

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Citation

Related articles…

Evolution of the appellation of origin concept in the vineyards of Australia

Australia is the seventh largest producer of wine and crushed 1.42 million tonnes of wine grapes in the 2001 vintage.

Enological characterization of mold resistant varieties grown in the Trentino Alpine Region

Among the different strategies used in vine growing to fight against mold diseases, it can be pointed out the hybridation of traditional grape varieties with others, presenting a genetic resistance to pathogen attack. The research in this field has been encouraged in recent years due to the increased concern about human safety and environmental pollution linked to the use of agrochemicals. This approach allows to limit the number of treatments and the type of active compounds used in vine management. The environment determines the pressure degree of the diseases on vines and the biologic response of the plant to their attack.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

Use of Lactiplantibacillus plantarum (ML PrimeTm) to improve malolactic fermentation of catarratto wine subjected to long post-fermentative maceration.

AIM: Lactiplantibacillus plantarum species is wordwide used as starter for malolactic fermentation [1,2]. For the first time, in the present study, the use of L. plantarum (ML PrimeTM, Lallemand wine) to produce white wines with post-fermentative maceration extended until 60 days has been investigated.