Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Abstract

AIM: The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures and frequent water stress events. The desynchronization between sugar accumulation and anthocyanins and organic acids during advanced ripening reported in previous studies frequently results in sub-optimal phenolic and aromatic maturity at the targeted sugar levels for winemaking. In this study, the effect of different rates of ripening on the chemistry of Cabernet Sauvignon wines was studied to explore if delayed ripening would result in higher quality wines.

METHODS: Fruit sugar accumulation rates were manipulated by means of crop load manipulation treatments and late season irrigation. Fruit was harvested at 26 °Brix and submitted to small-lot research winemaking. The basic chemistry and the composition of phenolic and aroma compounds were analyzed in the final wines.

RESULTS: The vineyard treatments returned three kinetics of sugar accumulation. A faster sugar accumulation (1 week earlier) was obtained by reducing crop load while a combination of crop removal and late season irrigation delayed ripening (2 weeks later) compared to untreated vines. Such effects of crop load and late season irrigation were already reported previously. In the final wines, there were little or no changes in the basic chemistry in response to the ripening rate. Crop load affected mainly the profile of wine aroma compounds, including both grape-derived and fermentation-derived compounds. On the other hand, an increase of irrigation late in the season led to an increase in phenolic compound levels, resulting in improved color and mouthfeel characteristics. Ripening was delayed by the interaction of cluster thinning and late season irrigation, which in turn led to higher concentrations of both volatile and phenolic compounds and further improvement of wine quality. In response to a slower sugar accumulation, an improvement of primary quality indicators of grape quality, such as lower green compounds and higher anthocyanins, translated into higher wine quality. Similar effects on these wine components were already observed in studies in which ripening was delayed by other means.

CONCLUSION

This study provides further confirmation that delayed ripening is beneficial to improve wine quality in late-ripening varieties. Amelioration of accelerated ripening is especially critical in warm and dry viticulture regions with long seasons, while the treatments investigated may not be necessary nor result in the same outcomes in cool wine regions. It was also shown that crop load and late season irrigation have a specific effect on aroma and phenolic compounds respectively, which deserves to be further explored in future studies.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Pietro Previtali

The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production,Nick DOKOOZLIAN, E. & J. Gallo Winery and Australian Research Council Training Centre for Innovative Wine Production Luis SANCHEZ, E. & J. Gallo Winery Bruce PAN, E. & J. Gallo Winery Kerry WILKINSON, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production Christopher FORD, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production

Contact the author

Keywords

aroma compounds; delayed ripening; phenolic compounds; ripening rates; wine metabolites

Citation

Related articles…

Mycotoxin accumulation and the possibilities of biological control of wine production quality

Against the background of climate change and the increasing impact of phytopathogenic agents of mycotic origin on the vine favors the appearance and toxicity of mycotoxins in wine.

Harnessing biodiversity to improve grapevine rootstock adaptation to drought

Drought is one of the most challenging threats for viticulture because of its impact on reducing yield and on the composition of grapes.

Advanced phenology due to climate change is projected to shift precipitation patterns for key cultivar-region combinations in New Zealand

Context of the study. Shifts in grapevine phenology driven by temperature increase due to climate change may result in different rainfall profiles between phenological stages.

TOWARDS THE SHELF-LIFE PREDICTION OF OLD CHAMPAGNE VINTAGES DEPENDING ON THE BOTTLE CAPACITY

Today, nearly one billion bottles of different sizes and capacities are aging in Champagne cellars while waiting to be put on the market. Among them, several tens of thousands of prestigious cuvees elaborated prior the 2000s are potentially concerned by prolonged aging on lees. However, when it comes to champagne tasting, dissolved CO₂ is a key compound responsible for the very much sought-after effer-vescence in glasses [1]. Yet, the slow decrease of dissolved CO₂ during prolonged aging of the most prestigious cuvees raises the issue of how long a champagne can age before it becomes unable to form CO₂ bubbles during tasting [2].

About validation of a method for the determination of volatile compounds in spirituous beverages using contained ethanol as a reference substance

The paper proposes an algorithm for validating a modified internal standard method using ethyl alcohol contained in the test sample as a reference substance.