Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Abstract

AIM: The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures and frequent water stress events. The desynchronization between sugar accumulation and anthocyanins and organic acids during advanced ripening reported in previous studies frequently results in sub-optimal phenolic and aromatic maturity at the targeted sugar levels for winemaking. In this study, the effect of different rates of ripening on the chemistry of Cabernet Sauvignon wines was studied to explore if delayed ripening would result in higher quality wines.

METHODS: Fruit sugar accumulation rates were manipulated by means of crop load manipulation treatments and late season irrigation. Fruit was harvested at 26 °Brix and submitted to small-lot research winemaking. The basic chemistry and the composition of phenolic and aroma compounds were analyzed in the final wines.

RESULTS: The vineyard treatments returned three kinetics of sugar accumulation. A faster sugar accumulation (1 week earlier) was obtained by reducing crop load while a combination of crop removal and late season irrigation delayed ripening (2 weeks later) compared to untreated vines. Such effects of crop load and late season irrigation were already reported previously. In the final wines, there were little or no changes in the basic chemistry in response to the ripening rate. Crop load affected mainly the profile of wine aroma compounds, including both grape-derived and fermentation-derived compounds. On the other hand, an increase of irrigation late in the season led to an increase in phenolic compound levels, resulting in improved color and mouthfeel characteristics. Ripening was delayed by the interaction of cluster thinning and late season irrigation, which in turn led to higher concentrations of both volatile and phenolic compounds and further improvement of wine quality. In response to a slower sugar accumulation, an improvement of primary quality indicators of grape quality, such as lower green compounds and higher anthocyanins, translated into higher wine quality. Similar effects on these wine components were already observed in studies in which ripening was delayed by other means.

CONCLUSION

This study provides further confirmation that delayed ripening is beneficial to improve wine quality in late-ripening varieties. Amelioration of accelerated ripening is especially critical in warm and dry viticulture regions with long seasons, while the treatments investigated may not be necessary nor result in the same outcomes in cool wine regions. It was also shown that crop load and late season irrigation have a specific effect on aroma and phenolic compounds respectively, which deserves to be further explored in future studies.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Pietro Previtali

The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production,Nick DOKOOZLIAN, E. & J. Gallo Winery and Australian Research Council Training Centre for Innovative Wine Production Luis SANCHEZ, E. & J. Gallo Winery Bruce PAN, E. & J. Gallo Winery Kerry WILKINSON, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production Christopher FORD, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production

Contact the author

Keywords

aroma compounds; delayed ripening; phenolic compounds; ripening rates; wine metabolites

Citation

Related articles…

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Geopedological and climatic zoning of northern Malaga vineyards region: Fuente de Piedra, Humilladero and Mollina (southern Spain)

The vineyards placed in the municipal areas of Fuente de Piedra, Humilladero and Mollina constitute a wine-growing important area of the “Zona Norte” of the province of Málaga.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation.

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.

Response of different grapevine cultivars to water stress using a hydroscape approach

Viticulture worldwide is currently affected by the effects of climate change. This set of adverse phenomena lead to a deterioration of functional vine mechanisms, affecting growth, physiology and grape ripening, which may cause severe losses with respect to yield and quality. To prevent water stress and other abiotic factors from severely affecting its physiology, the vine’s response is to reduce transpiration and photosynthesis rates. This response varies depending on the cultivar and its ability to adapt to the environment. The hydroscape method is based on the internal regulation of water status in the plant. It has been recently used to classify grapevine genotypes according to their iso/anisohydric behavior when they are subjected to water stress conditions.