Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Abstract

AIM: The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures and frequent water stress events. The desynchronization between sugar accumulation and anthocyanins and organic acids during advanced ripening reported in previous studies frequently results in sub-optimal phenolic and aromatic maturity at the targeted sugar levels for winemaking. In this study, the effect of different rates of ripening on the chemistry of Cabernet Sauvignon wines was studied to explore if delayed ripening would result in higher quality wines.

METHODS: Fruit sugar accumulation rates were manipulated by means of crop load manipulation treatments and late season irrigation. Fruit was harvested at 26 °Brix and submitted to small-lot research winemaking. The basic chemistry and the composition of phenolic and aroma compounds were analyzed in the final wines.

RESULTS: The vineyard treatments returned three kinetics of sugar accumulation. A faster sugar accumulation (1 week earlier) was obtained by reducing crop load while a combination of crop removal and late season irrigation delayed ripening (2 weeks later) compared to untreated vines. Such effects of crop load and late season irrigation were already reported previously. In the final wines, there were little or no changes in the basic chemistry in response to the ripening rate. Crop load affected mainly the profile of wine aroma compounds, including both grape-derived and fermentation-derived compounds. On the other hand, an increase of irrigation late in the season led to an increase in phenolic compound levels, resulting in improved color and mouthfeel characteristics. Ripening was delayed by the interaction of cluster thinning and late season irrigation, which in turn led to higher concentrations of both volatile and phenolic compounds and further improvement of wine quality. In response to a slower sugar accumulation, an improvement of primary quality indicators of grape quality, such as lower green compounds and higher anthocyanins, translated into higher wine quality. Similar effects on these wine components were already observed in studies in which ripening was delayed by other means.

CONCLUSION

This study provides further confirmation that delayed ripening is beneficial to improve wine quality in late-ripening varieties. Amelioration of accelerated ripening is especially critical in warm and dry viticulture regions with long seasons, while the treatments investigated may not be necessary nor result in the same outcomes in cool wine regions. It was also shown that crop load and late season irrigation have a specific effect on aroma and phenolic compounds respectively, which deserves to be further explored in future studies.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Pietro Previtali

The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production,Nick DOKOOZLIAN, E. & J. Gallo Winery and Australian Research Council Training Centre for Innovative Wine Production Luis SANCHEZ, E. & J. Gallo Winery Bruce PAN, E. & J. Gallo Winery Kerry WILKINSON, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production Christopher FORD, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production

Contact the author

Keywords

aroma compounds; delayed ripening; phenolic compounds; ripening rates; wine metabolites

Citation

Related articles…

Soil electrical resistivity measurement: from terroir characterization to within-field crop inputs management

Soil Electrical Resistivity measurement is a zoning tool used by soil scientists and agronomists in viticulture. Indeed, the measure enables to optimize pedological surveys

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Effect of pre-fermentative strategies on the polysaccharide composition of must and white wines

Among the macromolecules of enological interest in white wines, much attention has been paid to polysaccharides.

Terroir valorization strategies in a reformed denomination area: the Prosecco case study

Aims: This work summarizes some of the upmost recent studies and valorization strategies concerning the Prosecco wine production area. After the geographical denomination Prosecco (DO) was strongly reformed in 2009, the newborn DOCG (controlled and guaranteed DO) and DOC (controlled DO) areas have required different and specific strategies to promote and protect the value of their production.

Les sols du cru de Bonnezeaux, Thouarcé, Anjou, France

Le cru de Bonnezeaux est une des appellations prestigieuses des vins liquoreux et moelleux des Coteaux du Layon et sa réputation est ancienne. L’INAO a effectué sa délimitation en 1953. Le vignoble est situé au nord de la ville de Thouarcé et au sud du village de Bonnezeaux, le long du versant rive droite du Layon, exposé au sud-ouest. La superficie du vignoble est de 156 ha.