Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

Abstract

AIM: The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures and frequent water stress events. The desynchronization between sugar accumulation and anthocyanins and organic acids during advanced ripening reported in previous studies frequently results in sub-optimal phenolic and aromatic maturity at the targeted sugar levels for winemaking. In this study, the effect of different rates of ripening on the chemistry of Cabernet Sauvignon wines was studied to explore if delayed ripening would result in higher quality wines.

METHODS: Fruit sugar accumulation rates were manipulated by means of crop load manipulation treatments and late season irrigation. Fruit was harvested at 26 °Brix and submitted to small-lot research winemaking. The basic chemistry and the composition of phenolic and aroma compounds were analyzed in the final wines.

RESULTS: The vineyard treatments returned three kinetics of sugar accumulation. A faster sugar accumulation (1 week earlier) was obtained by reducing crop load while a combination of crop removal and late season irrigation delayed ripening (2 weeks later) compared to untreated vines. Such effects of crop load and late season irrigation were already reported previously. In the final wines, there were little or no changes in the basic chemistry in response to the ripening rate. Crop load affected mainly the profile of wine aroma compounds, including both grape-derived and fermentation-derived compounds. On the other hand, an increase of irrigation late in the season led to an increase in phenolic compound levels, resulting in improved color and mouthfeel characteristics. Ripening was delayed by the interaction of cluster thinning and late season irrigation, which in turn led to higher concentrations of both volatile and phenolic compounds and further improvement of wine quality. In response to a slower sugar accumulation, an improvement of primary quality indicators of grape quality, such as lower green compounds and higher anthocyanins, translated into higher wine quality. Similar effects on these wine components were already observed in studies in which ripening was delayed by other means.

CONCLUSION

This study provides further confirmation that delayed ripening is beneficial to improve wine quality in late-ripening varieties. Amelioration of accelerated ripening is especially critical in warm and dry viticulture regions with long seasons, while the treatments investigated may not be necessary nor result in the same outcomes in cool wine regions. It was also shown that crop load and late season irrigation have a specific effect on aroma and phenolic compounds respectively, which deserves to be further explored in future studies.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Pietro Previtali

The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production,Nick DOKOOZLIAN, E. & J. Gallo Winery and Australian Research Council Training Centre for Innovative Wine Production Luis SANCHEZ, E. & J. Gallo Winery Bruce PAN, E. & J. Gallo Winery Kerry WILKINSON, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production Christopher FORD, The University of Adelaide and Australian Research Council Training Centre for Innovative Wine Production

Contact the author

Keywords

aroma compounds; delayed ripening; phenolic compounds; ripening rates; wine metabolites

Citation

Related articles…

The FEM grapevine crossbreeding program for resistance to the main ampelopathies: towards climate-resilient varieties

The technique of crossing, whether free or controlled, has always been a source of variability allowing the selection of new varieties with improved fitness.

Terroir et marché des A.O.C

Cette communication sera basée sur les résultats d’une étude auprès des consommateurs réalisée par la société G3 pour l’I.N.A.O. sur les attitudes des consommateurs vis à vis des produits de terroir et des A.O.C. et sur un mémoire de DEA soutenu par Monsieur J-C. DURIEUX à l’Université de Paris X Nanterre, consacré aux variables explicatives du comportement d’achat des vins A.O.C.

Vineyard yield estimation using image analysis: assessing bunch occlusions and its dependency on fruiting zone canopy features

Performing accurate vineyard yield estimation is of upmost importance as it provides important benefits to the whole vine and wine industry. Recently, image-analysis approaches have been explored to address this issue however this approach has as main challenge the bunch occlusion, mostly by vegetation but also by neighboring bunches. The present work aims at assessing the magnitude of bunch occlusion by neighboring bunches and to evaluate its dependency on a selection of vegetative and reproductive vine parameters assessed at fruiting zone. Forty vine segments (1 m) of two vineyard plots of the white cultivars ‘Alvarinho’ and ‘Arinto’ were assessed for vegetative and reproductive features at fruiting zone and imaged with a 2D camera.

Pratiques de taille et développement des jeunes vignes

Dans le cadre de TerclimPro 2025, Gonzaga Santesteban a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8465

Effects of water and nitrogen uptake, and soil temperature, on vine development, berry ripening and wine quality of Cabernet-Sauvignon, Cabernet franc and Merlot (Saint-Emilion, 1997)

Wine quality depends largely on berry ripening conditions in relation to soil and climat. The influence of the soil has been studied in Bordeaux since the early Seventies (SEGUIN, 1970; DUTEAU et al., 1981; VAN LEEUWEN, 1991; VAN LEEUWEN et SEGUIN, 1994) and, more recently, in the Val de Loire (MORLAT, 1989), the Alsace (LEBON, 1993) and the Costières de Nîmes regions (MARTIN, 1995).