Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 A microwave digestion ICP-MS method for grapevine bark elemental profiling

A microwave digestion ICP-MS method for grapevine bark elemental profiling

Abstract

Aim: A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS. A representative grapevine bark sample and a similar matrix Certified Reference Material (CRM) were used for method optimisation. The method was subsequently applied to a set of New Zealand vineyard grapevine bark samples consisting of seven different grape varieties.

Methods: A homogenous bark sample and a CRM (ERMCD281) were treated with 16 different acid combinations and microwave digestion settings prior to ICP-MS analysis. 54 chemical elements were measured in the samples. Calibration standards were prepared in matrix matched solutions from single elements standards (Inorganic Ventures, USA).

Results: The acid digestion combination of HNO3, H2O2, and HCl with a MW digestion of 15 minutes was shown to give optimal results. 48 elements could be measured in a representative grapevine bark sample using this procedure and 27 elements in a reference CRM sample. Ca was the most abundant element present in all grape variety bark samples.

Conclusions

A method was developed and validated for an MW digestion of grapevine bark samples using ICP-MS. The application of this new method showed that bark from different grape varieties varies in elemental composition within a vineyard site.

Acknowledgments

The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alexandra Lowrey 

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca JELLEY, University of Auckland Stuart MORROW, University of Auckland

Contact the author

Keywords

icp-ms, grapevine bark, trace elements, microwave digestion

Citation

Related articles…

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.

Impact of aspects of the polysaccharide structure of mannoproteins on their interactions with Enological Tannins

Mannoproteins (MPs) with different structure of their polysaccharide part (branching, substitutions, …) were used to better understand the impact of characteristics of the usual structure of MPs when interacting with Grape Seed Tannins (ST). 

ABA and ethephon alleviated to a different extent the impact of elevated temperatures on grape berry composition

The Intergovernmental Panel on Climate Change (IPCC) forecasts an increase in global temperature and a decrease in relative humidity (RH) in the coming decades, which may have implications for berry ripening and composition.