Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 A microwave digestion ICP-MS method for grapevine bark elemental profiling

A microwave digestion ICP-MS method for grapevine bark elemental profiling

Abstract

Aim: A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS. A representative grapevine bark sample and a similar matrix Certified Reference Material (CRM) were used for method optimisation. The method was subsequently applied to a set of New Zealand vineyard grapevine bark samples consisting of seven different grape varieties.

Methods: A homogenous bark sample and a CRM (ERMCD281) were treated with 16 different acid combinations and microwave digestion settings prior to ICP-MS analysis. 54 chemical elements were measured in the samples. Calibration standards were prepared in matrix matched solutions from single elements standards (Inorganic Ventures, USA).

Results: The acid digestion combination of HNO3, H2O2, and HCl with a MW digestion of 15 minutes was shown to give optimal results. 48 elements could be measured in a representative grapevine bark sample using this procedure and 27 elements in a reference CRM sample. Ca was the most abundant element present in all grape variety bark samples.

Conclusions

A method was developed and validated for an MW digestion of grapevine bark samples using ICP-MS. The application of this new method showed that bark from different grape varieties varies in elemental composition within a vineyard site.

Acknowledgments

The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alexandra Lowrey 

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca JELLEY, University of Auckland Stuart MORROW, University of Auckland

Contact the author

Keywords

icp-ms, grapevine bark, trace elements, microwave digestion

Citation

Related articles…

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Development of a new indicator of grape skin ripening in relation to Botrytis cinerea susceptibility

The bunch rot induced by Botrytis cinerea is an important disease of grapevine that causes a diminution of grape quality and a considerable yield loss leading to an economic loss

Investigating three proximal remote sensing techniques for vineyard yield monitoring

Yield monitoring can provide the winegrowers with information for precise production inputs during the season, thereby, ensuring the best possible harvest. Yield estimation is currently achieved through an intensive process that is destructive and time-consuming. However, remote sensing provides a group of proximal technologies and techniques for a non-destructive and less time-consuming method for yield monitoring.The objective of this study was to analyse three different approaches, for measuring grapevine yield close to harvest.

How small amounts of oxygen introduced during bottling and storage can influence the metabolic fingerprint and SO2 content of white wines

The impact of minute amounts of headspace oxygen on the post-bottling development of wine is generally considered to be very important, since oxygen, packaging and storage conditions can either damage or improve wine quality. This is reflected in the generalised use of inert bottling lines, where the headspace between the white wine and the stopper is filled with an inert gas. This experiment aimed to address some open questions about the chemistry of the interaction between wine and oxygen, crucial for decisions regarding optimal closure. While it is known that similar amounts of oxygen affect different wines to a variable extent, our knowledge of chemistry is not sufficient to construct a predictive method.

Drought responses in Chardonnay and Sauvignon blanc grapevine cultivars: Mechanistic insights and varietal contrasts

This study explored the responses of Chardonnay and Sauvignon blanc grapevine cultivars to water deficit across four years, uncovering their shared patterns and distinctive coping mechanisms. The research was conducted in a commercial vineyard located in Isla de Maipo, Chile. Various characterization approaches were employed including plant water potentials (), gas exchange measurements, shoot vulnerability curves, productivity assessments, and leaf cell water relations. Linear mixed models and sensitivity analyses were performed using various statistical methods to evaluate cultivar responses to water deficit. As the water deficit progressed, both cultivars displayed a parallel reduction in stomatal conductance, leaf turgor, and increased shoot embolism.