Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effect of viticultural treatment on grape juice chemical composition

The effect of viticultural treatment on grape juice chemical composition

Abstract

AIM: Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology [1]. The interactions among these grapevines, pests and microbes can influence the chemical composition of grapes and, therefore, the metabolites of the wines [2,3]. The wine industry is becoming more aware of the importance that the vineyard ecosystem plays in grape and wine production; in addition, there is a growing desire to use fewer synthetic chemicals to promote natural and diverse vineyard ecosystems. This study investigates the effect of two different viticultural management approaches on grape juice composition. Key metabolites in juice samples originating from grapes subjected to different viticultural treatments (Contemporary – use of synthetic herbicides and Future – no use of synthetic herbicides) were measured prior to alcoholic fermentation.

METHODS: Key metabolites, including amino acids, C6 compounds, and thiol precursors, were quantified in this study using a combination of GC-MS and LC-MS/MS [4]. SPE was used to extract volatile C6-compounds from the juices before analysis [5,6]. Basic oenological parameters of the juice samples were also determined. Data analysis was carried out using the software R and MetaboAnalyst.

RESULTS: Twenty-wight important metabolites in New Zealand Sauvignon blanc, Pinot noir and Merlot juice samples were detected and measured. From the results, PERMANOVA factors (Variety, Vintage, Region and Treatment) were found to be significant (p-value < 0.05). Although the factor Treatment was less than the role of the intrinsic factors Variety and Vintage, it is essential to highlight that approximately 4.1% of the variation found within the data set can be attributed to the implementation of the viticultural management regimes.

CONCLUSIONS

In this study, the chemical profile of New Zealand grape juice from grapes grown under different vineyard management regimes was explored. The results confirmed that the difference in metabolite profiles between vineyard management regimes was small but detectable. This information is noteworthy and valuable for grape growers because of increasing concerns regarding the use of synthetic chemicals in agriculture and the shift towards improved sustainable horticultural practices.

ACKNOWLEDGEMENTS

The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jin Wang

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca E. JELLEY, University of Auckland Farhana PINU, New Zealand Institute for Plant and Food Research Limited Emma SHERMAN, New Zealand Institute for Plant and Food Research Limited Damian MARTIN, New Zealand Institute for Plant and Food Research Limited Claire GROSE, New Zealand Institute for Plant and Food Research Limited

Contact the author

Keywords

grape juice, viticultural treatments, amino acids, c6 compounds, thiol precursors

Citation

Related articles…

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

About long time and vine quality modelisation e pistemological appro ach to geographical viticulture

This work began as an intellectual game, in order to discuss the notion of wine quality in terms of terroir and territory spatial structure. Vine and wine quality has long been questioned by scientists. Each discipline approaching it with his own tools.

The “green gold” @fem: assessing grapevine germplasm diversity to crossbreed the varieties of the future

Context and purpose of the study. To date over 3,000 grapevine accessions have been collected at Fondazione Edmund Mach (FEM).

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Effect of foliar application of Ca, Si and their combination on grape volatile composition

Calcium (Ca) is an important nutrient for plants which plays key signaling and structural roles. It has been observed that exogenous Ca application favors the pectin accumulation and inhibition of polygalacturonase enzymes, minimizing fruit spoilage. Silicon (Si) is a non-essential element which has been found to be beneficial for improving crop yield and quality, as well as plant tolerance to diverse abiotic and biotic stress factors. The effect of Si supply to grapevine has been assessed in few investigations, which reported positive changes in grape quality and must composition.