Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effect of viticultural treatment on grape juice chemical composition

The effect of viticultural treatment on grape juice chemical composition

Abstract

AIM: Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology [1]. The interactions among these grapevines, pests and microbes can influence the chemical composition of grapes and, therefore, the metabolites of the wines [2,3]. The wine industry is becoming more aware of the importance that the vineyard ecosystem plays in grape and wine production; in addition, there is a growing desire to use fewer synthetic chemicals to promote natural and diverse vineyard ecosystems. This study investigates the effect of two different viticultural management approaches on grape juice composition. Key metabolites in juice samples originating from grapes subjected to different viticultural treatments (Contemporary – use of synthetic herbicides and Future – no use of synthetic herbicides) were measured prior to alcoholic fermentation.

METHODS: Key metabolites, including amino acids, C6 compounds, and thiol precursors, were quantified in this study using a combination of GC-MS and LC-MS/MS [4]. SPE was used to extract volatile C6-compounds from the juices before analysis [5,6]. Basic oenological parameters of the juice samples were also determined. Data analysis was carried out using the software R and MetaboAnalyst.

RESULTS: Twenty-wight important metabolites in New Zealand Sauvignon blanc, Pinot noir and Merlot juice samples were detected and measured. From the results, PERMANOVA factors (Variety, Vintage, Region and Treatment) were found to be significant (p-value < 0.05). Although the factor Treatment was less than the role of the intrinsic factors Variety and Vintage, it is essential to highlight that approximately 4.1% of the variation found within the data set can be attributed to the implementation of the viticultural management regimes.

CONCLUSIONS

In this study, the chemical profile of New Zealand grape juice from grapes grown under different vineyard management regimes was explored. The results confirmed that the difference in metabolite profiles between vineyard management regimes was small but detectable. This information is noteworthy and valuable for grape growers because of increasing concerns regarding the use of synthetic chemicals in agriculture and the shift towards improved sustainable horticultural practices.

ACKNOWLEDGEMENTS

The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Jin Wang

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca E. JELLEY, University of Auckland Farhana PINU, New Zealand Institute for Plant and Food Research Limited Emma SHERMAN, New Zealand Institute for Plant and Food Research Limited Damian MARTIN, New Zealand Institute for Plant and Food Research Limited Claire GROSE, New Zealand Institute for Plant and Food Research Limited

Contact the author

Keywords

grape juice, viticultural treatments, amino acids, c6 compounds, thiol precursors

Citation

Related articles…

Ancient and recent construction of Terroirs

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences

Switch genes as a key to understand the grapevine ripening disorder berry Shrivel?

The ripening of grapevine berries encompasses complex morphological and physiological processes, especially at veraison. Berry shrivel (BS) is a ripening physiological disorder affecting grape berries with visible symptoms appearing short after veraison. The main symptoms of BS are a strong reduction in sugar accumulation, inhibited anthocyanin biosynthesis and high pH values. The most popular red grape cultivar in Austria “Blauer Zweigelt” (Vitis vinifera L.) is specifically prone to develop the BS ripening disorder and up to date a no specific cause or causes could be identified. Recently omics approaches have identified and characterized key processes during grapevine ripening. Among them a small subset of genes, called SWITCH, have been described as markers for the onset of the ripening process in fruits.

SHIRAZ FLAVONOID EXTRACTABILITY IMPACTED BY HIGH AND EXTREME HIGH TEMPERATURES

Climate change is leading to an increase in average temperature and in the severity and occurrence of heatwaves, and is already disrupting grapevine phenology. In Australia, with the evolution of the weather of grape growing regions that are already warm and hot, berry composition including flavonoids, for which biosynthesis depends on bunch microclimate, are expected to be impacted [1]. These compounds, such as anthocyanins and tannins, contribute substantially to grape and wine quality. The goal of this research was to determine how flavonoid extraction is impacted when bunches are exposed to high (>35 °C) and extreme high (>45 °C) temperatures during berry development and maturity.

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Vine selection in France: An assessment after more than 60 years of work

It was at the end of the second world war that professor Branas laid the foundations of french vine selection. He was also behind the creation of domaine de vassal (1949) and antav (1962), which were to become the bridgeheads of the french strategy for the conservation, selection and multiplication of viticultural diversity. Initially based on visually virus-symptom-free massal selections, with the main aim of providing healthy, clearly-identified plant material, the process evolved as knowledge gained towards clonal selection.