Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

Abstract

AIM: The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines. One of this strategies is the use of elicitors which increase the defense in plants and also increase the content of secondary metabolites, such as anthocyanins . On the other hand, the use of use of nanoparticules joined to methyl jasmonate could diminish the concentrations applied in plants but obtaining similar effects in Monastrell anthocyanins profile as using only methyl jasmonate.

METHODS: The treatments were carried out in an experimental vineyard of Monastrell located in South East of Spain, foliar application of each treatament, by triplicate, in verasion and a week later. The differents treataments were i) control, ii) methyl jasmonate and iii) nano methyl jasmonate (nanoparticles of hydroxyapatite doped with methyl jasmonate). A study of mature evolution was done, the samples were taken at the previous moment of the firts time treataments and every ten days and finaly in the moment of harvest. The analysis were performance by HPLC following the Gil Muñoz et al. (1) procedure.

RESULTS: The treatment with methyl jasmonate increased the anthocyanins composition in the differents points of maturation and also in the harvest moment. Similar results were obtained in the treatment with methyl jasmonate and hydroxyapatite doped with methyl jasmonate.

CONCLUSIONS

The used of nanotechnology in the treatments with methyl jasmonate would allow to reduce the dose of this elicitor obtaining similar results, in the way to reduce costs and contribute to a sustainable agriculture.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María José Giménez Bañón

Murcian Institute of Agricultural and Food Research and Development (IMIDA), D.F Paladines-Quezada (a) J.D Moreno-Olivares (a) B. Parra-Torrejón (b) G.B Ramírez-Rodríguez (b) J.M Delgado-López (b) J.I Fernández-Fernández (a) R. Gil-Muñoz (a) a Murcian Institute of Agricultural and Food Research and Development (IMIDA) b Inorganic Chemistry Department, Science Faculty, Granada University

Contact the author

Keywords

rippening, elicitor, nanotechnology, sustainable agriculture, anthocyanins, grape

Citation

Related articles…

Evaluation of the composition of pomace from grapes grown in the slopes of the Popocatépetl volcano (Puebla, Mexico). Feasibility of its application for obtaining functional foods

Grape pomace is the main byproduct generated during wine production and is primarily composed of skins and seeds, which are obtained after the pressing stage [1]. This byproduct retains a significant amount of nutrients, such as fiber, phenolic compounds, unsaturated fatty acids, vitamins, and minerals.

New acylated flavonols identified in the grape skin of Vitis vinifera cv. Tannat and their wines

Flavonols are a class of flavonoid compounds derived from plant secondary metabolism. There they play different roles like antioxidants, internal regulators and UV screenings. In red wines, flavonols have increasingly received consideration by part of scientific and winemakers according their properties began to arise known. Among these stand out wine colour stabilization and their value as bioactive compounds. In this work the complete series of the acetylated and p-coumaroylated derivatives of the 3-O-glycosides of methoxylated flavonols, namely isorhamnetin, laricitrin and syringetin, have been identified in grapes and their respective wines from Vitis vinifera cv. Tannat.

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

HPLC and SEC analysis on the flavonoids and the skin cell wall material of Merlot berries reveals new insights into the study of the phenolic maturity

Anthocyanins and tannins contribute to important sensorial traits of red wines, such as color and mouthfeel attributes.

Evolution and sensory contribution of ethyl acetate in sweet wines

Ethyl acetate (EtOAc) is the main ester present in all wines, generally produced by yeasts during alcoholic fermentation and sometimes by bacteria during barrel ageing. Its odor is characterized by solvent notes, which give wines their acescent note [1].