Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

Abstract

AIM: The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines. One of this strategies is the use of elicitors which increase the defense in plants and also increase the content of secondary metabolites, such as anthocyanins . On the other hand, the use of use of nanoparticules joined to methyl jasmonate could diminish the concentrations applied in plants but obtaining similar effects in Monastrell anthocyanins profile as using only methyl jasmonate.

METHODS: The treatments were carried out in an experimental vineyard of Monastrell located in South East of Spain, foliar application of each treatament, by triplicate, in verasion and a week later. The differents treataments were i) control, ii) methyl jasmonate and iii) nano methyl jasmonate (nanoparticles of hydroxyapatite doped with methyl jasmonate). A study of mature evolution was done, the samples were taken at the previous moment of the firts time treataments and every ten days and finaly in the moment of harvest. The analysis were performance by HPLC following the Gil Muñoz et al. (1) procedure.

RESULTS: The treatment with methyl jasmonate increased the anthocyanins composition in the differents points of maturation and also in the harvest moment. Similar results were obtained in the treatment with methyl jasmonate and hydroxyapatite doped with methyl jasmonate.

CONCLUSIONS

The used of nanotechnology in the treatments with methyl jasmonate would allow to reduce the dose of this elicitor obtaining similar results, in the way to reduce costs and contribute to a sustainable agriculture.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María José Giménez Bañón

Murcian Institute of Agricultural and Food Research and Development (IMIDA), D.F Paladines-Quezada (a) J.D Moreno-Olivares (a) B. Parra-Torrejón (b) G.B Ramírez-Rodríguez (b) J.M Delgado-López (b) J.I Fernández-Fernández (a) R. Gil-Muñoz (a) a Murcian Institute of Agricultural and Food Research and Development (IMIDA) b Inorganic Chemistry Department, Science Faculty, Granada University

Contact the author

Keywords

rippening, elicitor, nanotechnology, sustainable agriculture, anthocyanins, grape

Citation

Related articles…

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Obtaining new varieties derived from Monastrell for the preparation of low alcoholic wines

The main challenge faced by viticulture is to improve the quality of the wines, adapting them to the new consumer demands that demand wines with lower alcohol content and greater freshness. In the last 30 years, a clear modification has been observed in the composition of the grape due to climate change

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.