Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

Methyl jasmonate versus nano methyl jasmonate: effects on anthocyanins mature evolution in monastrell grapes

Abstract

AIM: The climate change is afecting particulary to the South of Spain, with high temperatures. It is important to develop new strategies in order to mantain the quality of wines. One of this strategies is the use of elicitors which increase the defense in plants and also increase the content of secondary metabolites, such as anthocyanins . On the other hand, the use of use of nanoparticules joined to methyl jasmonate could diminish the concentrations applied in plants but obtaining similar effects in Monastrell anthocyanins profile as using only methyl jasmonate.

METHODS: The treatments were carried out in an experimental vineyard of Monastrell located in South East of Spain, foliar application of each treatament, by triplicate, in verasion and a week later. The differents treataments were i) control, ii) methyl jasmonate and iii) nano methyl jasmonate (nanoparticles of hydroxyapatite doped with methyl jasmonate). A study of mature evolution was done, the samples were taken at the previous moment of the firts time treataments and every ten days and finaly in the moment of harvest. The analysis were performance by HPLC following the Gil Muñoz et al. (1) procedure.

RESULTS: The treatment with methyl jasmonate increased the anthocyanins composition in the differents points of maturation and also in the harvest moment. Similar results were obtained in the treatment with methyl jasmonate and hydroxyapatite doped with methyl jasmonate.

CONCLUSIONS

The used of nanotechnology in the treatments with methyl jasmonate would allow to reduce the dose of this elicitor obtaining similar results, in the way to reduce costs and contribute to a sustainable agriculture.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

María José Giménez Bañón

Murcian Institute of Agricultural and Food Research and Development (IMIDA), D.F Paladines-Quezada (a) J.D Moreno-Olivares (a) B. Parra-Torrejón (b) G.B Ramírez-Rodríguez (b) J.M Delgado-López (b) J.I Fernández-Fernández (a) R. Gil-Muñoz (a) a Murcian Institute of Agricultural and Food Research and Development (IMIDA) b Inorganic Chemistry Department, Science Faculty, Granada University

Contact the author

Keywords

rippening, elicitor, nanotechnology, sustainable agriculture, anthocyanins, grape

Citation

Related articles…

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.

Eliminating Brettanomyces and lactic acid bacteria in wine: the potential of Ultra-High Pressure Homogenization (UHPH)

Ultra-High Pressure Homogenization (UHPH) is an innovative technology that can be seamlessly integrated at various stages of winemaking. Its application helps minimize or even eliminate the need for sulphites and other antimicrobial or antioxidant treatments, offering a faster and more sustainable alternative.

Emerging pest pressures in viticulture: a brief review of Argyrotaenia Ljungiana in Eastern Europe

As viticulture faces increasing threats from emerging pests, understanding and dealing with new infestations is crucial.

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

Oenological features of Sangiovese wine from vinification of whole grape berries

The present study was performed in a traditional winery located in the viticultural area of Brunello di Montalcino, Siena, Italy, in the vintage 2015. Actually, in this winery Sangiovese grape musts are fermented in large oak barrels by a single strain of Saccharomyces cerevisiae previously isolated in the same winery. Pumping over operations are carried out once or twice a day until the end of alcoholic fermentations. The aim of this work was to investigate on the oenological properties of Sangiovese wine produced with the traditional winemaking process adopted by the winery under study obtained from the fermentation of whole berries compared to that from crushed grape must. In particular, two lots of 65q of Sangiovese grapes from the same 3ha vineyard were vinified in 150hL oak barrels.