Macrowine 2021

Smartphone application use as a tool for water supply management

Abstract

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management, in the moments of deficit becomes more and more necessary in a viticulture that for this region is not used to irrigation. Therefore, permanent and real-time monitoring of the water status of the vineyard is important to avoid negative consequences on the yield and composition of the grapes. The availability of numerous smartphone applications allows the winegrower to use his own Smartphone as a tool for monitoring the vineyard. The objective of this work was to provide a reasonable water supply to the vineyard using digital tools that facilitate the management of the vineyard at a productive level. The experiment was carried out in a commercial vineyard of the red variety Tannat during the 2020 season. An irrigation treatment (70% ETP) was compared with a control without irrigation. Leaf water potential, leaf area, yield, grape composition (acidity, sugars, anthocyanins) were determined. The used smartphone applications were Viticanopy and ApexVigne. The data provided by the apps were correlated with the variables obtained in the field. It was possible to estimate the evolution of Kc in a quick and simple way, which allowed to made adjustments of the irrigation dose almost in real-time. During the season, 140 mm of water were applied leading to an enhancement in the response of the plant. The yield was increased by 35% while sugar and phenolic compounds concentrations were improved in the grape in comparison with the control sample. The use of smartphone applications proven to be a useful tool for the winegrower to manage the use of water resources.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gustavo Pereyra, Bruno Tisseyre, Milka FERRER

Biochemistry Laboratory, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay,

ITAP, Univ. of Montpellier, Institut Agro Montpellier, INRAE, Montpellier, France

Plant Production Department Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay

Contact the author

Keywords

water management; canopy vigor; lai; smartphone; precision viticulture; Vitis vinifera

Citation

Related articles…

Sensory changes in wines associated with the ripening of Grenache grapes from vineyards in different climatic zones

Climate change is introducing a high variability on grape ripening, causing uncertainty, excessive spending on pesticides and eventually frustrating results in terms of the quality of the vintage, with the increasingly frequent appearance of aromatic problems associated with overripeness, raisining and greenness, which sometimes only appear in bottled wines.

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.

Assessment of the impact of actions in the vineyard and its surrounding environment on biodiversity in Rioja Alavesa (Spain)

Traditional viticulture areas have experienced in the last decades an intensification of field practices, linked to an increased use of fertilisers and phytosanitary products, and to a more intensive mechanization and uniformization of the landscape. This change in management has sometimes led to higher rates of soil erosion andloss of soil structure, fertility decline, groundwater contamination, and to an increased pressure of pests and diseases. Additionally, intensification usually leads to a simplification of landscapes, of particular concern in prestigious wine grape regions where the economical revenue encourages the conversion of land use from natural habitats to high value wine grape production. To revert this trend, it is necessary that growers implement actions that promote biodiversity in their vineyards. The aim of this study is to assess the impact of the implementation of cover crops, vegetational corridors, dry stone walls and vineyard biodiversity hotspots estimated through the study of arthropods. The work has been carried out in four vineyards in Rioja Alavesa belonging to Ostatu winery, where these infrastructures were implemented in 2020. The presence and diversity of arthropods was studied by capturing them at different times in the season and at different distances from the infrastructure using pit-fall traps in the soil and yellow, white and blue chromatic traps at the canopy level. This is a preliminary study in which all adult insects were sorted to the taxonomic level of order and Coleoptera were classified to morphospecies. The results obtained show that there is a relationship between the basic characteristics of the vineyard and the arthropods captured, with a positive effect, although also dependent on the vineyard, of the presence of infrastructure.

Sustainable wine industry: supercritical fluid extraction as key technology for biorefinery enhancement

Supercritical carbon dioxide (sc-CO2) extraction is an environmentally friendly technology employed for bioactive compounds recovery from various natural sources and biomasses. The advantages of sc-co2 extraction include its selectivity, relatively mild operating conditions, which minimize the degradation of sensitive compounds, and the absence of potentially harmful organic solvents.

Effect of different plant fibers on the elimination of undesirable compounds in red wine. Correlation with its polysaccharide composition

The presence of undesirable compounds in wines, such as OTA, biogenic amines and pesticides residues, affects wine quality and can cause health problems for the consumer. The main tool that a winemaker has to reduce their content in the wine is fining. However, some of the fining agents commonly used in the winery can cause allergies or even increase the protein content in the wine, increasing the turbidity. To avoid these problems, the use of plant fibers may be an alternative, such as those from grape pomace[1] or other plant origins.