Macrowine 2021

Smartphone application use as a tool for water supply management

Abstract

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management, in the moments of deficit becomes more and more necessary in a viticulture that for this region is not used to irrigation. Therefore, permanent and real-time monitoring of the water status of the vineyard is important to avoid negative consequences on the yield and composition of the grapes. The availability of numerous smartphone applications allows the winegrower to use his own Smartphone as a tool for monitoring the vineyard. The objective of this work was to provide a reasonable water supply to the vineyard using digital tools that facilitate the management of the vineyard at a productive level. The experiment was carried out in a commercial vineyard of the red variety Tannat during the 2020 season. An irrigation treatment (70% ETP) was compared with a control without irrigation. Leaf water potential, leaf area, yield, grape composition (acidity, sugars, anthocyanins) were determined. The used smartphone applications were Viticanopy and ApexVigne. The data provided by the apps were correlated with the variables obtained in the field. It was possible to estimate the evolution of Kc in a quick and simple way, which allowed to made adjustments of the irrigation dose almost in real-time. During the season, 140 mm of water were applied leading to an enhancement in the response of the plant. The yield was increased by 35% while sugar and phenolic compounds concentrations were improved in the grape in comparison with the control sample. The use of smartphone applications proven to be a useful tool for the winegrower to manage the use of water resources.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gustavo Pereyra, Bruno Tisseyre, Milka FERRER

Biochemistry Laboratory, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay,

ITAP, Univ. of Montpellier, Institut Agro Montpellier, INRAE, Montpellier, France

Plant Production Department Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay

Contact the author

Keywords

water management; canopy vigor; lai; smartphone; precision viticulture; Vitis vinifera

Citation

Related articles…

Soil monoliths, soil variability and terroir

Aim: The aim of this work is educating people about soil variability and terroir. Soil monoliths are used to educate the wine industry about how to describe a soil profile, interpret the soil formation processes operating in a particular soil profile and consequently the impact of soil properties on vine growth, fruit quality and wine production. Soil monoliths are a permanent artistic tool for educating, research and management of soil variability.  

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

Clone performance under different environmental conditions in California

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection

Function, barriers, and the environmental benefits of reuse bottle system for wine

With 0.3 to 0.7 kg CO2eq per 0.75 L wine, the glass bottle is the main contributor to the carbon footprint of a bottle of wine.

What does the concept of natural wine evoke in the minds and senses of tasters? Effect of the level of expertise.

In this video recording of the IVES science meeting 2025, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne-Franche-Comté, Dijon, France) and María-Pilar Sáenz-Navajas (Instituto de Ciencias de la Vid y el Vino (ICVV) (CSIC-UR-GR), La Rioja, Spain) speak about the concept of natural wine. This presentation is based on an original article accessible for free on OENO One.