Macrowine 2021

Smartphone application use as a tool for water supply management

Abstract

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management, in the moments of deficit becomes more and more necessary in a viticulture that for this region is not used to irrigation. Therefore, permanent and real-time monitoring of the water status of the vineyard is important to avoid negative consequences on the yield and composition of the grapes. The availability of numerous smartphone applications allows the winegrower to use his own Smartphone as a tool for monitoring the vineyard. The objective of this work was to provide a reasonable water supply to the vineyard using digital tools that facilitate the management of the vineyard at a productive level. The experiment was carried out in a commercial vineyard of the red variety Tannat during the 2020 season. An irrigation treatment (70% ETP) was compared with a control without irrigation. Leaf water potential, leaf area, yield, grape composition (acidity, sugars, anthocyanins) were determined. The used smartphone applications were Viticanopy and ApexVigne. The data provided by the apps were correlated with the variables obtained in the field. It was possible to estimate the evolution of Kc in a quick and simple way, which allowed to made adjustments of the irrigation dose almost in real-time. During the season, 140 mm of water were applied leading to an enhancement in the response of the plant. The yield was increased by 35% while sugar and phenolic compounds concentrations were improved in the grape in comparison with the control sample. The use of smartphone applications proven to be a useful tool for the winegrower to manage the use of water resources.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gustavo Pereyra, Bruno Tisseyre, Milka FERRER

Biochemistry Laboratory, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay,

ITAP, Univ. of Montpellier, Institut Agro Montpellier, INRAE, Montpellier, France

Plant Production Department Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay

Contact the author

Keywords

water management; canopy vigor; lai; smartphone; precision viticulture; Vitis vinifera

Citation

Related articles…

Towards the definition of a detailed transcriptomic map of grape berry development

In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Deciphering the color of rosé wines using polyphenol targeted metabolomics

The color of rosés wines is extremely diverse and a key element in their marketing. It is due to the presence of red anthocyanins extracted from grape skins and pigments formed from them and other wine constituents during wine-making.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.