Macrowine 2021

Smartphone application use as a tool for water supply management

Abstract

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management, in the moments of deficit becomes more and more necessary in a viticulture that for this region is not used to irrigation. Therefore, permanent and real-time monitoring of the water status of the vineyard is important to avoid negative consequences on the yield and composition of the grapes. The availability of numerous smartphone applications allows the winegrower to use his own Smartphone as a tool for monitoring the vineyard. The objective of this work was to provide a reasonable water supply to the vineyard using digital tools that facilitate the management of the vineyard at a productive level. The experiment was carried out in a commercial vineyard of the red variety Tannat during the 2020 season. An irrigation treatment (70% ETP) was compared with a control without irrigation. Leaf water potential, leaf area, yield, grape composition (acidity, sugars, anthocyanins) were determined. The used smartphone applications were Viticanopy and ApexVigne. The data provided by the apps were correlated with the variables obtained in the field. It was possible to estimate the evolution of Kc in a quick and simple way, which allowed to made adjustments of the irrigation dose almost in real-time. During the season, 140 mm of water were applied leading to an enhancement in the response of the plant. The yield was increased by 35% while sugar and phenolic compounds concentrations were improved in the grape in comparison with the control sample. The use of smartphone applications proven to be a useful tool for the winegrower to manage the use of water resources.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gustavo Pereyra, Bruno Tisseyre, Milka FERRER

Biochemistry Laboratory, Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay,

ITAP, Univ. of Montpellier, Institut Agro Montpellier, INRAE, Montpellier, France

Plant Production Department Universidad de la República, Av. E. Garzón 780, CP 12900 Montevideo, Uruguay

Contact the author

Keywords

water management; canopy vigor; lai; smartphone; precision viticulture; Vitis vinifera

Citation

Related articles…

LIFE Climawin: impacts, risks and opportunities in the transition to sustainable viticulture

The LIFE Climawin project drives the sustainable transformation of the wine sector in response to climate change through the implementation of an innovative management model applied at the demonstrative winery, Bosque de Matasnos.

Prise en compte de la notion de terroir dans les AOC en France : Aspects Culturels

“The vine and the wine are great mysteries. Only the vine makes us intelligible what is the true flavor of the earth”. Colette. The notion of terroir has always been the basis of the notion of AOC from which it is inseparable. It is moreover the definition of the production zone which was at the start of the attempts to set up the designation of origin, at the beginning of the century, after the phylloxera crisis.

“Terroir” and “Great” zonation study regarding Istrian Malvasia, Porec Rosy Muscat and Momjan White Muscat (HR)

In a so called “Great” zonation, “terroir” study is of great importance also in aim of the best exploiting. In the present paper are shown results from the research in Istria with the aim of individuating the influence of soil

Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Hanseniaspora spp. are one of the most common yeast isolates in vineyards and wineries and play an important role in wine-making.

Xylem vessel blockages in grape pedicel growing in tropical climate observed by microtomography

In grape berry pedicel, xylem hydraulic conductance can be impaired by blockage deposition in the lumen of xylem elements. However, the varietal difference of the interruptions has not yet been characterized. In this preliminary work, we utilized synchrotron x-ray computed microtomography experiments performed at MOGNO beamline (LNLS – Brazil) to identify possible blockage sites in natural grape pedicel xylem. For this, we imaged dehydrated pedicel’s stem portion from the Niagara Rosada variety in three different phenological stages (Pre-veraison (PreV), veraison (V) and post-veraison (PostV). The reconstructed tridimensional images with a voxel size of 1.16 µm were segmented for the identification of xylem vessel lumens. After analysing one pedicel stem per stage, we identified 658 vessels without occlusion throughout his axial plane and 41 in which we could identify possible interruptions.