Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence of the agronomic management on the aroma of Riesling wines

Influence of the agronomic management on the aroma of Riesling wines

Abstract

Nitrogen fertilisation of grapevines is known to influence not only plant development and production yield, but also yeast assimilable nitrogen (YAN). This parameter is related to the growth of yeast during fermentation and the quality of wines, since nitrogen is involved in the biochemical production of the fermentation aroma. The work compared three agronomic managements of a Riesling vineyard on the concentration of YAN in grape must and the volatile profile of the resulting wines: a conventional approach and two organic viticulture protocols. The study started six years after the conversion to organic viticulture of the vineyard. Musts and wines were obtained from five field replicates for each management over three consecutive vintages. Grapes were picked the same day each harvest and vinified under standard conditions. The must was analysed for the main quality control parameters and the volatile profile of wine was determined at the end of the alcoholic fermentation by GC-MS/MS. The differences found on the quality composition of wines were technologically irrelevant with the exception of YAN, which resulted constantly poorer over time in one of the organic systems. Furthermore, this management tended to produce a lower concentration of acetate esters. In this respect, it has been found a correlation between the total acetate esters in wine and the YAN present in grape musts within each vintage. With regard to terpenoids, linalool and alpha-terpineol tended to be higher in one of the organic managements. Nevertheless, the multivariate analysis did not separate wines on the basis of the aroma profile and the differences observed between managements on the volatiles varied among years. The results support that the aroma of wines produced from organic viticulture can be comparable to those obtained from a conventional farming system, although it seems essential to manage properly vine nutrition to ensure an appropriate YAN content in grape musts.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Roberto Zanzotti 

Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.,Tomas ROMAN, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Mauro PAOLINI, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Emanuela COLLER, University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Italy Nicola CAPPELLO, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Sergio MOSER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Mario MALACARNE, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Roberto LARCHER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.

Contact the author

Keywords

organic viticulture, wine aroma, yan, riesling

Citation

Related articles…

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

l lavoro presenta l’evoluzione dei contenuti di arsenico nelle uve durante lo sviluppo e la maturazione, e la sua distribuzione nell’acino; verifica inoltre la relazione tra i contenuti di As nelle uve

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.