Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence of the agronomic management on the aroma of Riesling wines

Influence of the agronomic management on the aroma of Riesling wines

Abstract

Nitrogen fertilisation of grapevines is known to influence not only plant development and production yield, but also yeast assimilable nitrogen (YAN). This parameter is related to the growth of yeast during fermentation and the quality of wines, since nitrogen is involved in the biochemical production of the fermentation aroma. The work compared three agronomic managements of a Riesling vineyard on the concentration of YAN in grape must and the volatile profile of the resulting wines: a conventional approach and two organic viticulture protocols. The study started six years after the conversion to organic viticulture of the vineyard. Musts and wines were obtained from five field replicates for each management over three consecutive vintages. Grapes were picked the same day each harvest and vinified under standard conditions. The must was analysed for the main quality control parameters and the volatile profile of wine was determined at the end of the alcoholic fermentation by GC-MS/MS. The differences found on the quality composition of wines were technologically irrelevant with the exception of YAN, which resulted constantly poorer over time in one of the organic systems. Furthermore, this management tended to produce a lower concentration of acetate esters. In this respect, it has been found a correlation between the total acetate esters in wine and the YAN present in grape musts within each vintage. With regard to terpenoids, linalool and alpha-terpineol tended to be higher in one of the organic managements. Nevertheless, the multivariate analysis did not separate wines on the basis of the aroma profile and the differences observed between managements on the volatiles varied among years. The results support that the aroma of wines produced from organic viticulture can be comparable to those obtained from a conventional farming system, although it seems essential to manage properly vine nutrition to ensure an appropriate YAN content in grape musts.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Roberto Zanzotti 

Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.,Tomas ROMAN, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Mauro PAOLINI, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Emanuela COLLER, University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Italy Nicola CAPPELLO, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Sergio MOSER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Mario MALACARNE, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Roberto LARCHER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.

Contact the author

Keywords

organic viticulture, wine aroma, yan, riesling

Citation

Related articles…

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Colloidal color stabilization in wine: A comparative study of Saccharomyces and non-Saccharomyces mannoproteins

Structure-function relationships between the polysaccharide part of S. cerevisiae Mannoprotein Pools (MPs) and their potential to interact with anthocyanins and Protein-Tannins aggregates was previously assessed [1,2].

The Pampa and the vineyard: gaucho´s natural and symbolic aspects in the identity´s constitution of “Vinhos da Campanha”’s terroir – RS/Brasil

The wine region of “Vinhos da Campanha” is located in southern Brazil, on the Uruguay borderline. The colonization’s process in the region was characterized by territorial disputes between Portuguese

Effect of regulated deficit irrigation regime on amino acids content of Monastrell (Vitis vinifera L.) grapes

Irrigation is an important practice to influence vine quality, especially in Mediterranean regions, characterized by hot summers and severe droughts during the growing season. This study focused on deficit irrigation regime influence on amino acids composition of Monastrell grapevines under semiarid conditions (Albacete, Southeastern of Spain). In 2019, two treatments were applied: non-irrigation (NI) and regulated deficit irrigation (RDI), watered at 30% of the estimated crop evapotranspiration from fruit set to onset of veraison. Grape amino acids content was analyzed by HPLC. Berries from non-irrigated vines showed higher concentration of several amino acids, such as tryptophan (73%), arginine (70%), lysine (36%), isoleucine (27%), and leucine (21%), compared to RDI grapes. Arginine is, together with ammonium ion, the principal nitrogen source for yeasts during the alcoholic fermentation; while isoleucine, tryptophan, and leucine are precursors of fermentative volatile compounds, key compounds for wine quality. Moreover, NI treatment increased in a 14% the total amino acids content in grapes compared to RDI treatment. The reported effects might be because yield was 70% higher in RDI vines than in the NI ones and, therefore, the sink demand was increased in the irrigated vines. In addition, NI vines suffered more severe water stress and it is known that the amino acids synthesis and accumulation can be influenced by the plant response to stress. According to the results, the irrigation regime showed effect on amino acids concentration in Monastrell grapes under semiarid conditions. Grapes from non-irrigated vines showed a higher content of several amino acids relevant to the fermentative process and to the wine aroma compounds formation. It is demonstrated that the final content of nitrogen-related components in grapes is influenced by the irrigation regime. The convenience of the irrigation strategy to suggest will depend on the desired wine style and the target yield levels.

Managing alcohol in sparkling wine production: adjusting harvest timing and utilizing grape juice in “liqueur de tirage”

Context and purpose of the study. Sparkling wine production is majorly impacted by climate change as sugar accumulation and aromatic development in grapes are often decoupled.