Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Influence of the agronomic management on the aroma of Riesling wines

Influence of the agronomic management on the aroma of Riesling wines

Abstract

Nitrogen fertilisation of grapevines is known to influence not only plant development and production yield, but also yeast assimilable nitrogen (YAN). This parameter is related to the growth of yeast during fermentation and the quality of wines, since nitrogen is involved in the biochemical production of the fermentation aroma. The work compared three agronomic managements of a Riesling vineyard on the concentration of YAN in grape must and the volatile profile of the resulting wines: a conventional approach and two organic viticulture protocols. The study started six years after the conversion to organic viticulture of the vineyard. Musts and wines were obtained from five field replicates for each management over three consecutive vintages. Grapes were picked the same day each harvest and vinified under standard conditions. The must was analysed for the main quality control parameters and the volatile profile of wine was determined at the end of the alcoholic fermentation by GC-MS/MS. The differences found on the quality composition of wines were technologically irrelevant with the exception of YAN, which resulted constantly poorer over time in one of the organic systems. Furthermore, this management tended to produce a lower concentration of acetate esters. In this respect, it has been found a correlation between the total acetate esters in wine and the YAN present in grape musts within each vintage. With regard to terpenoids, linalool and alpha-terpineol tended to be higher in one of the organic managements. Nevertheless, the multivariate analysis did not separate wines on the basis of the aroma profile and the differences observed between managements on the volatiles varied among years. The results support that the aroma of wines produced from organic viticulture can be comparable to those obtained from a conventional farming system, although it seems essential to manage properly vine nutrition to ensure an appropriate YAN content in grape musts.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Roberto Zanzotti 

Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.,Tomas ROMAN, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Mauro PAOLINI, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach, 38010 San Michele all‘Adige, Italy. Emanuela COLLER, University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Italy Nicola CAPPELLO, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Sergio MOSER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Mario MALACARNE, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy. Roberto LARCHER, Fondazione Edmund Mach—Technology Transfer Center, via Edmund Mach 1, 38010 San Michele all‘Adige, Italy.

Contact the author

Keywords

organic viticulture, wine aroma, yan, riesling

Citation

Related articles…

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

Projected changes in vine phenology of two varieties with different thermal requirements cultivated in La Mancha DO (Spain) under climate change scenarios

The aim of this work was to analyze the phenology variability of Tempranillo and Chardonnay cultivars, related to the climatic characteristics in La Mancha Designation of Origin, and their potential changes under climate change scenarios. Phenological dates referred to budbreak, flowering, veraison and harvest were analyzed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The thermal requirements to reach each of these phenological stages were calculated and expressed as the GDD accumulated from DOY=60. Changes in phenology were projected by 2050 and 2070 taking into account those values and the projected temperatures and precipitation, simulated under two Representative Concentration Pathway (RCP) scenarios –RCP4.5 and RCP8.5– using an ensemble of models. The average phenological dates during the period under study were, April 16th ± 6.6 days and April 5th ± 6.0 days for budbreak, May 31st ± 6.0 days and May 27th ± 5.3 days for flowering, July 26th ± 5.6 days and July 25th ± 5.8 days for veraison, and Ago 23rd ± 10.8 days and Ago 17th ± 9.0 days for harvest, respectively, for Tempranillo and Chardonnay. The projected changes in temperature imply an average change in the maximum growing season (April-August) temperatures of 1.2 and 1.9°C by 2050, and 1.6 and 2.6°C by 2070, under the RCP4.5 and RCP8.5 scenarios, respectively. A reduction in precipitation is predicted, which vary between 15% for 2050 under RCP4.5 scenario and up to 30% by 2070 under RCP8.5. The advance of the phenological dates for 2050, could be of 6, 7, 7, and 8 days for Tempranillo and 4, 6, 6 and 9 days for Chardonnay, respectively for budbreak, flowering, veraison and harvest under the RCP4.5 scenario. Under the RCP8.5 emission scenario, the advance could be up to 30% higher.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.

Projected impacts of climate change on viticulture over France wine-regions using downscalled CMIP6 multi-model data

Winegrape is a crop for which the quality and the identity of the final product depends strongly on the
climatic conditions of the year. By impacting production systems and the way in which wines are
developed, climate change represents a major challenge for the wine industry (Ollat et al., 2021).

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.