Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Abstract

Downy and powdery mildew are major issues in grapevine cultivation, requiring many phytosanitary treatments to ensure yield and quality. Climatic changes are also challenging grape cultivation in several areas, leading to anticipation of phenological events and increasing impact of temperature on grape quality. Beside disease resistance, adaptation of varieties to changing climate is thus an additional breeding target, which includes the selection of late ripening varieties that may escape the warmer summer conditions, while preserving distinctive performance and wine quality. With the aim to increase our understanding of the genetic determinism for phenological and quality traits, we have crossed the autochthonous cv. Corvina, typical of the Verona province area, to previously identified divergent varieties. Segregating cross populations of Corvina x Solaris and Cabernet-Sauvignon x Corvina including a high number of seedlings were developed, propagated and grown in field conditions for mapping of traits. High-density genetic maps based on SNPs obtained through hybridization to an Illumina Vitis18KSNP chip are produced. Field phenotyping includes the evaluation of the main phenological stages (budbreak, flowering, veraison and ripening) together with the assessment of some morphological and quality traits at harvest on all progenies with the final purpose of QTL mapping. Moreover, the introgression of resistance sources from cv Solaris is assessed in the relative cross. Response to Plasmopara viticola is investigated especially in selected resistant genotypes under field conditions or following inoculation of leaf discs and shows different degrees of resistance in some Corvina offsprings differing in the number of inherited Rpv loci. Based on resistance gene introgression as well as on phenotypic parameters, some selections are being propagated for a deeper characterization. New markers derived from the characterization of Corvina-crosses are expected to further assist future selections. Altogether, the described approaches will improve our understanding of the genetic control of phenology and berry quality traits, thus assisting breeding in this important local variety.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Diana Bellin, 1, Martina Marini, 1, Ron Shmuleviz, 1, Alice Baroni, 1,  Riccardo Mora, 1, Tahir Mujtaba, 1, Martina Zerneri, 1, Giada Bolognesi, 1, Jessica Vervalle, 2, Laura Costantini, 3, Maria Stella Grando, 3, Giovanni Battista Tornielli, 1,  Annalisa Polverari, 1

1, Department Of Biotechnology, University Of Verona,
2, Stellenbosch University
3, Fondazione Edmund Mach – Istituto Agrario San Michele All’Adige

Contact the author

Keywords

grapevine, corvina, plasmopara viticola, plant phenology

Citation

Related articles…

Application to the wine sector of European Convention on the landscapes

The landscape is defined by the European convention of the landscape (Florence, October 20, 2000) like part of the territory as perceived by the populations, whose character results from the action of natural and/or human factors and their interrelationships. This convention is based on the contribution cultural, ecological, environmental, social of the landscapes and aims at a reinforcement of the tools of protection and valorization in particular in the agricultural policies, of regional planning and town planning. Moreover, it encourages a step of identification and qualification of the landscapes and underlines the need for developing the sensitizing and the training of the actors concerned.

Removal of Fumonisin B1 and B2 from red wine using polymeric substances

The Ability of PVPP (Polyvinylpolypyrrolidone), PVP-DEGMA-TAIC (copolimerization of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate) and PAEGDMA
(poly(acrylamide-co-ethylene glycol dimethacrylate)) polymers was tested as removal agents for Fumonisin B1 (FB1) and Fumonisin B2 (FB2) from model solutions and red wine. The polymers removal capacity was checked at three different resident times (2, 8 and 24 hours of contact time between the polymer and the sample), showing no differences in the percentage of FB1 and FB2 removal. Then, different polymer concentrations (1, 5 and 10 mg mL-1) were tested in model solution with and without phenolics (i.e. gallic acid and 4-methylcatechol).

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS).

Late season canopy management practices to reduce sugar loading and improve color profile of Cabernet-Sauvignon grapes and wines in the high irradiance and hot conditions of California Central Valley

Global warming is accelerating grape ripening, leading to unbalanced wines from fruit with high sugar content but poor aroma and colour development. Reducing the size of the photosynthetic apparatus after veraison has been shown to delay technological ripeness in cool climates, but methods have not been tested in areas with high irradiance and temperature where fruit exposure could have disastrous effects on berry composition. In this Cabernet-Sauvignon trial, we compared the application of an antitranspirant (pinolene), to severe canopy topping and above bunch zone leaf removal, all performed at mid-ripening, with an untouched control. We monitored the vines weekly by measuring stem water potential, gas exchange, fruit zone light exposure. We sampled berries to measure berry weight, total soluble solids, pH, titratable acidity, and the anthocyanin profile. At harvest, we assessed yield components, measured carbon isotope discrimination, rated sunburn on clusters, and produced experimental wines. We submitted harvest samples to metabolomic profiling through PFP-Q Exactive MS/MS and wines to sensory analysis. Application of the antitranspirant significantly reduced stomatal conductance and assimilation rate but did not affect the stem water potential. Inversely, leaf removal and topping increased water potential but did not affect leaf gas exchange. The late topping was the only treatment able to decrease sugar content (up to 2Bx), increase titratable acidity and pH, and improve anthocyanin content because of lower degradation of di-hydroxylated forms. Late leaf removal above the bunch zone increased lightning conditions in the canopy and produced the most significant damage on fruits. Yield components were not affected. This work suggests that late-season canopy management can effectively control ripening speeds and improve grapes and wines. Still, the effect on grape exposure in a critical time must be well balanced to avoid problems with the appropriate technique.