Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Abstract

AIM: We investigated the effect of soil texture on grapevine response to water stress, leaf abscisic acid concentration and berry quality, in two adjacent vineyards located in the renewed Cannubi hill of Barolo (Langhe area, CN, North-West Italy).

METHODS: The distance as the crow flies between the two Nebbiolo vineyards was about 250 m; cultural practices, rain, rootstocks (V. berlandieri x V. riparia), vine age were similar. The main difference between the two vineyards was the soil texture, one vineyard displaying a silty-loam soil where small dimension particles (69.4 %, clay + loam) were prevalent, with clay accounting for 18.3 % (high clay, HC), the other displaying a loam-soil, where small dimension particles were 48.2 % with clay at 14.4 % (low clay, LC). Photosynthesis, transpiration, stomatal conductance (gs) were assessed at three time points during the season by ADC Lc pro+ Photosynthesis System (Huddestone, UK) on 10 fully expanded mature leaf per plot. A Scholander pressure bomb was used for the Ψstem determination on 8 leaves. The free-ABA concentration was quantified in 3 mature and healthy leaves per plot (HPLC-DAD). On berries, we measured total soluble solids, anthocyanin concentration and profiles (HPLC-DAD), total flavonoids (Di Stefano and Cravero, 1991; Corona et al., 2015) and total proanthocyanidins, spectrophotometrically (Harbertson et al., 2015). The berry volatiles were assessed by SBSE-GC/MS (Ferrandino et al., 2012).

RESULTS: The two vineyard soils showed different rates of drying speed, higher in LC respect to HC. Nebbiolo vines grown in HC soil tended to reduce the Nebbiolo cultivar anhisohydric behaviour, closing stomata at lower values of stomatal conductance, in line with the higher leaf ABA concentration respect to LC, after moderate water stress conditions (Ferrandino and Lovisolo, 2014; Tramontini et al., 2014). At the berry level, this resulted in a significantly higher anthocyanin concentration since 15 days after véraison and in a higher percentage incidence of acylated anthocyanins. No major differences were found in total flavonoid and in total proanthocyanidin concentrations. However, as to these two last classes of compounds, further studies would be necessary as the spectrophotometric method used could have been not enough sensitive to allow the appreciation of differences. At harvest the concentration of non-C6 free-volatiles, particularly terpenes, was significantly higher in the grapes of the HC vineyard.

CONCLUSIONS:

Soil particle size significantly influenced grapevine physiological performances and, consequently, berry quality. At a zonal scale, it is well known that soils with more clay, as the silty-loam HC vineyard, produce grapes giving high-structured wines, whereas sands (or the reduction of clay, such as the LC vineyard) produce less complex wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Ferrandino, Antonio CARLOMAGNO, Giorgio IVALDI, Marco VITALI, Olga KEDRINA, Davide PATONO, Vittorino NOVELLO, Claudio LOVISOLO

University of Turin, Agriproject Group srl, Rutigliano (BA), formerly DISAFA, University of Turin, formerly DISAFA,  University of Turin, DISAFA

Contact the author

Keywords

Soil texture, stomatal conductance, anthocyanins, volatiles

Citation

Related articles…

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

HOW DOES ULTRASOUND TREATMENT AFFECT THE AGEING PROFILE OF AN ITALIAN RED WINE?

Many wine styles require moderate or extended ageing to ensure optimal consumer experience. However, few consumers have the interest or ability to age wine themselves, and holding wine in optimal conditions for extended periods is expensive for producers. A study was conducted on the use of ul-trasound energy on wine, with particular reference to its impact on sensory and chemical profiles. The OIV has authorised the use of ultrasound for processing crushed grapes (must) in Resolution OENO 616-2019, but not yet for finished wine1,2.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Influence of the type of tanks employed for winemaking on red wine phenolic composition

The grape maturation process is being affected by the consequences of global climate change and, as a result, there is a gap at harvest time between the technological maturity of grapes (mostly the concentration of sugar and acids) and its phenolic quality. Due to this gap, the wines elaborated using those grapes show a non-adequate phenolic composition, which results in defects on its color and astringency characteristics. Astringency is mainly related to the salivary protein precipitation because of the interaction not only with wine flavanols but also with other wine phenolics, such as flavonols or different pigments.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).