Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Abstract

AIM: We investigated the effect of soil texture on grapevine response to water stress, leaf abscisic acid concentration and berry quality, in two adjacent vineyards located in the renewed Cannubi hill of Barolo (Langhe area, CN, North-West Italy).

METHODS: The distance as the crow flies between the two Nebbiolo vineyards was about 250 m; cultural practices, rain, rootstocks (V. berlandieri x V. riparia), vine age were similar. The main difference between the two vineyards was the soil texture, one vineyard displaying a silty-loam soil where small dimension particles (69.4 %, clay + loam) were prevalent, with clay accounting for 18.3 % (high clay, HC), the other displaying a loam-soil, where small dimension particles were 48.2 % with clay at 14.4 % (low clay, LC). Photosynthesis, transpiration, stomatal conductance (gs) were assessed at three time points during the season by ADC Lc pro+ Photosynthesis System (Huddestone, UK) on 10 fully expanded mature leaf per plot. A Scholander pressure bomb was used for the Ψstem determination on 8 leaves. The free-ABA concentration was quantified in 3 mature and healthy leaves per plot (HPLC-DAD). On berries, we measured total soluble solids, anthocyanin concentration and profiles (HPLC-DAD), total flavonoids (Di Stefano and Cravero, 1991; Corona et al., 2015) and total proanthocyanidins, spectrophotometrically (Harbertson et al., 2015). The berry volatiles were assessed by SBSE-GC/MS (Ferrandino et al., 2012).

RESULTS: The two vineyard soils showed different rates of drying speed, higher in LC respect to HC. Nebbiolo vines grown in HC soil tended to reduce the Nebbiolo cultivar anhisohydric behaviour, closing stomata at lower values of stomatal conductance, in line with the higher leaf ABA concentration respect to LC, after moderate water stress conditions (Ferrandino and Lovisolo, 2014; Tramontini et al., 2014). At the berry level, this resulted in a significantly higher anthocyanin concentration since 15 days after véraison and in a higher percentage incidence of acylated anthocyanins. No major differences were found in total flavonoid and in total proanthocyanidin concentrations. However, as to these two last classes of compounds, further studies would be necessary as the spectrophotometric method used could have been not enough sensitive to allow the appreciation of differences. At harvest the concentration of non-C6 free-volatiles, particularly terpenes, was significantly higher in the grapes of the HC vineyard.

CONCLUSIONS:

Soil particle size significantly influenced grapevine physiological performances and, consequently, berry quality. At a zonal scale, it is well known that soils with more clay, as the silty-loam HC vineyard, produce grapes giving high-structured wines, whereas sands (or the reduction of clay, such as the LC vineyard) produce less complex wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Ferrandino, Antonio CARLOMAGNO, Giorgio IVALDI, Marco VITALI, Olga KEDRINA, Davide PATONO, Vittorino NOVELLO, Claudio LOVISOLO

University of Turin, Agriproject Group srl, Rutigliano (BA), formerly DISAFA, University of Turin, formerly DISAFA,  University of Turin, DISAFA

Contact the author

Keywords

Soil texture, stomatal conductance, anthocyanins, volatiles

Citation

Related articles…

Cinétique de développement de la Pourriture Noble dans différents terroirs des Coteaux du Layon : mise au point d’une méthodologie

Dans la région des Coteaux du Layon, en Maine et Loire, l’effet terroir et son déterminisme sont étudiés dans le cadre de la production des vins liquoreux.
Ces vins sont le résultat d’une maturité poussée au delà de celle prévue par la nature afin de donner aux baies une teneur en sucre et en matière sèche très forte, pour mieux valoriser ces effets de la surmaturation, les baies sont récoltées selon la méthode des tries successives (Asselin et al, 1996). Ainsi, on ne récolte à chaque passage que les grains ayant atteint le niveau de concentration requis pour obtenir des vins à fort degré d’alcool avec des sucres résiduels.

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

Comprehensive lipid profiling of grape musts: impact of static settling

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2].

Immobilization of S. cerevisiae and O. œni for the control of wine fermentation steps

Controlling the speed of alcoholic (AF) and malolactic (MLF) fermentations in wine can be an important challenge for the production of certain short rotation wines for entry-level market segments. Immobilization techniques for Saccharomyces cerevisiae and Œnococcus œni, the microorganisms responsible for these fermentations, are widely studied for industrial applications. Indeed, these processes allow to accumulate biomass and thus to increase cell densities inducing high fermentation velocities. Recent works have shown the performance of MLF carried out with biofilms of O. œni, immobilized on various supports in a rich medium (MRSm: modified MRS broth with malic acid and fructose).

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation.