Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Abstract

AIM: We investigated the effect of soil texture on grapevine response to water stress, leaf abscisic acid concentration and berry quality, in two adjacent vineyards located in the renewed Cannubi hill of Barolo (Langhe area, CN, North-West Italy).

METHODS: The distance as the crow flies between the two Nebbiolo vineyards was about 250 m; cultural practices, rain, rootstocks (V. berlandieri x V. riparia), vine age were similar. The main difference between the two vineyards was the soil texture, one vineyard displaying a silty-loam soil where small dimension particles (69.4 %, clay + loam) were prevalent, with clay accounting for 18.3 % (high clay, HC), the other displaying a loam-soil, where small dimension particles were 48.2 % with clay at 14.4 % (low clay, LC). Photosynthesis, transpiration, stomatal conductance (gs) were assessed at three time points during the season by ADC Lc pro+ Photosynthesis System (Huddestone, UK) on 10 fully expanded mature leaf per plot. A Scholander pressure bomb was used for the Ψstem determination on 8 leaves. The free-ABA concentration was quantified in 3 mature and healthy leaves per plot (HPLC-DAD). On berries, we measured total soluble solids, anthocyanin concentration and profiles (HPLC-DAD), total flavonoids (Di Stefano and Cravero, 1991; Corona et al., 2015) and total proanthocyanidins, spectrophotometrically (Harbertson et al., 2015). The berry volatiles were assessed by SBSE-GC/MS (Ferrandino et al., 2012).

RESULTS: The two vineyard soils showed different rates of drying speed, higher in LC respect to HC. Nebbiolo vines grown in HC soil tended to reduce the Nebbiolo cultivar anhisohydric behaviour, closing stomata at lower values of stomatal conductance, in line with the higher leaf ABA concentration respect to LC, after moderate water stress conditions (Ferrandino and Lovisolo, 2014; Tramontini et al., 2014). At the berry level, this resulted in a significantly higher anthocyanin concentration since 15 days after véraison and in a higher percentage incidence of acylated anthocyanins. No major differences were found in total flavonoid and in total proanthocyanidin concentrations. However, as to these two last classes of compounds, further studies would be necessary as the spectrophotometric method used could have been not enough sensitive to allow the appreciation of differences. At harvest the concentration of non-C6 free-volatiles, particularly terpenes, was significantly higher in the grapes of the HC vineyard.

CONCLUSIONS:

Soil particle size significantly influenced grapevine physiological performances and, consequently, berry quality. At a zonal scale, it is well known that soils with more clay, as the silty-loam HC vineyard, produce grapes giving high-structured wines, whereas sands (or the reduction of clay, such as the LC vineyard) produce less complex wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Ferrandino, Antonio CARLOMAGNO, Giorgio IVALDI, Marco VITALI, Olga KEDRINA, Davide PATONO, Vittorino NOVELLO, Claudio LOVISOLO

University of Turin, Agriproject Group srl, Rutigliano (BA), formerly DISAFA, University of Turin, formerly DISAFA,  University of Turin, DISAFA

Contact the author

Keywords

Soil texture, stomatal conductance, anthocyanins, volatiles

Citation

Related articles…

On the losses of dissolved CO2 from laser-etched champagne glasses under standard tasting conditions

Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate, definitely impacts champagne tasting by modifying the neuro-physico-chemical mechanisms responsible for aroma release and flavor perception. Based on theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics and mass transfer equations, a global model is proposed (depending on various parameters of both the wine and the glass itself), which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses.

Effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine

In this video recording of the IVES science meeting 2023, Fernando Zamora (Department of biochemistry and biotechnology, Faculty of oenology, Universitat Rovira i Virgili, Spain) speaks about the effects of using cationic exchange for reducing pH on the composition and quality of sparkling wine. This presentation is based on an original article accessible for free on OENO One.

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas.

Managing extraction of colour, tannin and methoxypyrazines in Pinot noir grapes treated by leaf removal

Managing extraction of tannins and green aroma compounds attributed from methoxypyrazines in winemaking is crucial for producing high quality Pinot noir wine. This study1 investigated the impact of leaf removal on concentrations of anthocyanins, tannins, and methoxypyrazines in Pinot noir grapes and resultant wines.