Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Effect of soil particle size on vine water status, leaf abscisic acid content and berry quality in nebbiolo grapes

Abstract

AIM: We investigated the effect of soil texture on grapevine response to water stress, leaf abscisic acid concentration and berry quality, in two adjacent vineyards located in the renewed Cannubi hill of Barolo (Langhe area, CN, North-West Italy).

METHODS: The distance as the crow flies between the two Nebbiolo vineyards was about 250 m; cultural practices, rain, rootstocks (V. berlandieri x V. riparia), vine age were similar. The main difference between the two vineyards was the soil texture, one vineyard displaying a silty-loam soil where small dimension particles (69.4 %, clay + loam) were prevalent, with clay accounting for 18.3 % (high clay, HC), the other displaying a loam-soil, where small dimension particles were 48.2 % with clay at 14.4 % (low clay, LC). Photosynthesis, transpiration, stomatal conductance (gs) were assessed at three time points during the season by ADC Lc pro+ Photosynthesis System (Huddestone, UK) on 10 fully expanded mature leaf per plot. A Scholander pressure bomb was used for the Ψstem determination on 8 leaves. The free-ABA concentration was quantified in 3 mature and healthy leaves per plot (HPLC-DAD). On berries, we measured total soluble solids, anthocyanin concentration and profiles (HPLC-DAD), total flavonoids (Di Stefano and Cravero, 1991; Corona et al., 2015) and total proanthocyanidins, spectrophotometrically (Harbertson et al., 2015). The berry volatiles were assessed by SBSE-GC/MS (Ferrandino et al., 2012).

RESULTS: The two vineyard soils showed different rates of drying speed, higher in LC respect to HC. Nebbiolo vines grown in HC soil tended to reduce the Nebbiolo cultivar anhisohydric behaviour, closing stomata at lower values of stomatal conductance, in line with the higher leaf ABA concentration respect to LC, after moderate water stress conditions (Ferrandino and Lovisolo, 2014; Tramontini et al., 2014). At the berry level, this resulted in a significantly higher anthocyanin concentration since 15 days after véraison and in a higher percentage incidence of acylated anthocyanins. No major differences were found in total flavonoid and in total proanthocyanidin concentrations. However, as to these two last classes of compounds, further studies would be necessary as the spectrophotometric method used could have been not enough sensitive to allow the appreciation of differences. At harvest the concentration of non-C6 free-volatiles, particularly terpenes, was significantly higher in the grapes of the HC vineyard.

CONCLUSIONS:

Soil particle size significantly influenced grapevine physiological performances and, consequently, berry quality. At a zonal scale, it is well known that soils with more clay, as the silty-loam HC vineyard, produce grapes giving high-structured wines, whereas sands (or the reduction of clay, such as the LC vineyard) produce less complex wines.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alessandra Ferrandino, Antonio CARLOMAGNO, Giorgio IVALDI, Marco VITALI, Olga KEDRINA, Davide PATONO, Vittorino NOVELLO, Claudio LOVISOLO

University of Turin, Agriproject Group srl, Rutigliano (BA), formerly DISAFA, University of Turin, formerly DISAFA,  University of Turin, DISAFA

Contact the author

Keywords

Soil texture, stomatal conductance, anthocyanins, volatiles

Citation

Related articles…

austrianvineyards.com: online viewer of all designations of Austrian wine

To digitally record and present all the origins of Austrian wines in the same perfect and clear way was the motivation for the Austrian Wine Marketing Board (Austrian Wine) to start with the project in 2018. In June 2021 the results were presented to the public in an online viewer showing all the designations of Austrian wine, available at https://austrianvineyards.com in a largely barrier-free manner. The online viewer provides tailored individual maps fitted to the respective zoom level. The smallest unit of wine-origins in Austria is called Ried and is displayed in a plot-specific manner highlighting areas under vine. Information on the Ried include administrative district, winegrowing municipality, cadastral municipality, large collective vineyard site, specific winegrowing region, generic winegrowing region, winegrowing area and, in many cases, an illustrative picture. Complementary data on the size, elevation (minimum-maximum), orientation (in 8 sectors plus flat) and gradient (minimum, maximum, average) are based on the area under vine according to the EU’s Integrated Administration and Control System. Additional information covers climate data. The diagrams are taken from the monthly breakdown of data in the annals of the Central Institute for Meteorology and Geodynamics, Austria provide a display of values for air temperature, precipitation, and sunshine hours for the reference year and the long-term average. Seasonal aggregated data on temperature, precipitation, and sunshine hours complete the display. Short descriptions with emphasis on geology and soil, field name in historical maps, etymology of the denomination, and main planted variety complements the available information for the main designations in the online viewer. These descriptions are compiled by winegrowers, geologists, historians, and journalists. All the information and data can be extracted to a pdf-file. Printed vineyard maps are also available. Missing content regarding wine origins in Styria will be completed in winter 2021/22.

Rootstock impact on foliar symptom expression of esca on Vitis vinifera cv. Cabernet-Sauvignon

Trunk diseases and esca in particular, represent a major threat to the sustainability of the vineyards. The percentages of unproductive vines in a plot could vary from 4% to over 20 % depending on local conditions and vintages.

Sugar accumulation disorder Berry Shrivel – from current knowledge towards novel hypothesis

In contrast to fruit and grape berry ripening, the biological processes causing ripening disorders are often much less understood, although shriveling disorders of fruits are manifold and contribute to yield losses and reduced fruit quality worldwide. Shrinking berries are a common feature for all shriveling disorders in grapevine although their timing of appearance during the berry ripening process and their underlying induction processes distinct them from each other. The sugar accumulation disorder Berry Shrivel (BS) is characterized by a suppression of sugar accumulation short after veraison resulting in berries low in sugar content and anthocyanins in berry skins, while the organic acid content is similar. Recent studies analyzed the biochemical, morphological and molecular processes affected in BS berries and linked early changes to the period of ripening onset [1,2].

Effectiveness of carboxymethyl cellulose (CMC) on tartaric stabilization of cava base wine

Recent EU regulations allow the use of carboxymethylcellulose (CMC) as a stabilization agent in wine. We tested CMC in bases for sparkling wines, which must be stabilized before the second fermentation that raises alcohol concentration by 1,5%.

Potentiel des sols viticoles et qualité des vins

La qualité des vins dépend de différents facteurs et procédés, notamment de la nature des terrains viticoles. Dans ce travail, nous avons cherché à établir les liens entre descripteurs pédologiques des parcelles et descripteurs sensoriels des vins. Sur la base de Classifications Ascendantes Hiérarchiques (CAH) et d’Analyses en Composante Principale (ACP), il a été possible d’établir des liens entre la nature des parcelles (sableuse, argileuse, sablo-graveuleuse) et certains descripteurs sensoriels des vins (chaleur, astringence, fruit noir) et plus globalement avec le type de vins élaborés.