Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Abstract

AIM: Evaluating the effects of canopy side on the chemical composition of Merlot, Cabernet-Sauvignon and Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

METHODS: Cabernet-Sauvignon, Carmenère, and Merlot grapes were harvested from a VSP trained experimental vineyard with north-south row orientation, located in the O’Higgins Region of Chile (34°20’06.9″S 70°47’54.3″W). For each cultivar, three representative rows were selected, and 200 berries were randomly collected in a 50 m span, keeping samples of both sides of the canopy separated. Samplings were carried out fortnightly from the veraison to the harvest (i.e., 0, 7, 21, 35 and 49, days post veraison). Soluble solids, titratable acidity, and pH were measured according to OIV-MA-AS313-01 and OIV-MA- AS313-15 methodologies. The content of glucose, fructose, malic acid, and tartaric acid in juices were analyzed by commercial enzymatic kits. Phenolic extracts were obtained by ultrasound maceration in a 50% ethanol-water mixture from which condensed tannins by the methylcellulose precipitation assay, total phenolics by Folin-Cioacalteu, and low molecular weight phenolics by HPLC-DAD were analyzed.

RESULTS: Contrary to some investigations, our results did not show major differences in fruit composition between the varieties and canopy side, particularly when major juice parameters such as sugars or acids were analyzed. Like so, the phenolics extracts did not show statistical differences when total phenolics or condensed tannins were compared according to canopy side but was possible to identify differences and highest phenolic amount within Cabernet-Sauvignon and Merlot compared to Carmenère; however, some of the low molecular weight phenolics significantly differ when varieties from different sides of the canopy were analyzed. For instance, catechin was significatively higher in fruit from the westside of the canopy in Cabernet-Sauvignon and Merlot, whilst east facing cluster from the three varieties had higher malvidin-3-glucoside concentration. Besides the prior, significant differences in the concentration of phenolics lengthwise the ripening, were observed for the tree varieties under study.

CONCLUSIONS:

Under the conditions of this study, only minor differences on fruit composition by varieties and canopy side were observed, particularly when it comes to low molecular weight phenolics.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paula A. Peña-Martínez, Liudis L. PINO María A. NAVARRO, Felipe LAURIE

Universidad de Talca, Chile.

Contact the author

Keywords

canopy side, phenolics, Cabernet-Sauvignon, Merlot, Carmenère

Citation

Related articles…

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

Assay of distinct modes of polysaccharidases dosage in vinification with cv. Malbec. Effects on microbiological evolution, color and skin depletion

In the maceration stage of winemaking, enzymes can be used to degrade the polysaccharides present in the cell walls and middle sheets, and thus facilitate the extraction of juice and the release of polyphenols and aroma precursors retained in the grape skins.

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.