Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Abstract

AIM: Evaluating the effects of canopy side on the chemical composition of Merlot, Cabernet-Sauvignon and Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

METHODS: Cabernet-Sauvignon, Carmenère, and Merlot grapes were harvested from a VSP trained experimental vineyard with north-south row orientation, located in the O’Higgins Region of Chile (34°20’06.9″S 70°47’54.3″W). For each cultivar, three representative rows were selected, and 200 berries were randomly collected in a 50 m span, keeping samples of both sides of the canopy separated. Samplings were carried out fortnightly from the veraison to the harvest (i.e., 0, 7, 21, 35 and 49, days post veraison). Soluble solids, titratable acidity, and pH were measured according to OIV-MA-AS313-01 and OIV-MA- AS313-15 methodologies. The content of glucose, fructose, malic acid, and tartaric acid in juices were analyzed by commercial enzymatic kits. Phenolic extracts were obtained by ultrasound maceration in a 50% ethanol-water mixture from which condensed tannins by the methylcellulose precipitation assay, total phenolics by Folin-Cioacalteu, and low molecular weight phenolics by HPLC-DAD were analyzed.

RESULTS: Contrary to some investigations, our results did not show major differences in fruit composition between the varieties and canopy side, particularly when major juice parameters such as sugars or acids were analyzed. Like so, the phenolics extracts did not show statistical differences when total phenolics or condensed tannins were compared according to canopy side but was possible to identify differences and highest phenolic amount within Cabernet-Sauvignon and Merlot compared to Carmenère; however, some of the low molecular weight phenolics significantly differ when varieties from different sides of the canopy were analyzed. For instance, catechin was significatively higher in fruit from the westside of the canopy in Cabernet-Sauvignon and Merlot, whilst east facing cluster from the three varieties had higher malvidin-3-glucoside concentration. Besides the prior, significant differences in the concentration of phenolics lengthwise the ripening, were observed for the tree varieties under study.

CONCLUSIONS:

Under the conditions of this study, only minor differences on fruit composition by varieties and canopy side were observed, particularly when it comes to low molecular weight phenolics.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paula A. Peña-Martínez, Liudis L. PINO María A. NAVARRO, Felipe LAURIE

Universidad de Talca, Chile.

Contact the author

Keywords

canopy side, phenolics, Cabernet-Sauvignon, Merlot, Carmenère

Citation

Related articles…

A survey on the rotundone content of 18 grape varieties sourced from a germplasm 

Rotundone, the pepper aroma compound, has been detected in wines made from a large number of grape varieties. However, given the fact that analyzed wines were sourced from different winegrowing regions and seasons, made using different winemaking techniques and at different scales, it remains difficult to assess the real variety potential to produce rotundone.

Changes in red wine composition during bottle aging: impacts of viticultural conditions and oxygen availability

Bottle ageing is considered essential for most premium red wine production. An important aim of bottle ageing of wine is to achieve a balance between the oxidative and reductive development. This is typically evaluated by the accumulation of aldehyde compounds (causing oxidative off-flavour) and sulfur-containing compounds (causing reductive off-flavour) in the wine [1]

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of “Amarone della Valpolicella” terroir

Valpolicella is a famous Italian wine-producing region. One of its main characteristic is the intensive use of grapes that are submitted to post-harvest withering. This is rather unique in the context of red wine, especially for the production of a dry red wine such as Amarone. Amarone wines produced in Valpolicella different geographic origin are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity. Aroma is the product of a biochemical and technological series of steps, resulting from the contribution of different volatile molecules deriving from grapes, fermentations, and reactions linked to aging, as well as one of the most important features in the expression of the geographic identity and sensory uniqueness of a wine.

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.