Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

The effects of canopy side on the chemical composition of merlot, Cabernet-Sauvignon, and Carmenère (Vitis vinifera L.) Grapes during ripening

Abstract

AIM: Evaluating the effects of canopy side on the chemical composition of Merlot, Cabernet-Sauvignon and Carmenère fruit during ripening of a Vertical shoot positioning, VSP, trained experimental vineyard with north-south row orientation.

METHODS: Cabernet-Sauvignon, Carmenère, and Merlot grapes were harvested from a VSP trained experimental vineyard with north-south row orientation, located in the O’Higgins Region of Chile (34°20’06.9″S 70°47’54.3″W). For each cultivar, three representative rows were selected, and 200 berries were randomly collected in a 50 m span, keeping samples of both sides of the canopy separated. Samplings were carried out fortnightly from the veraison to the harvest (i.e., 0, 7, 21, 35 and 49, days post veraison). Soluble solids, titratable acidity, and pH were measured according to OIV-MA-AS313-01 and OIV-MA- AS313-15 methodologies. The content of glucose, fructose, malic acid, and tartaric acid in juices were analyzed by commercial enzymatic kits. Phenolic extracts were obtained by ultrasound maceration in a 50% ethanol-water mixture from which condensed tannins by the methylcellulose precipitation assay, total phenolics by Folin-Cioacalteu, and low molecular weight phenolics by HPLC-DAD were analyzed.

RESULTS: Contrary to some investigations, our results did not show major differences in fruit composition between the varieties and canopy side, particularly when major juice parameters such as sugars or acids were analyzed. Like so, the phenolics extracts did not show statistical differences when total phenolics or condensed tannins were compared according to canopy side but was possible to identify differences and highest phenolic amount within Cabernet-Sauvignon and Merlot compared to Carmenère; however, some of the low molecular weight phenolics significantly differ when varieties from different sides of the canopy were analyzed. For instance, catechin was significatively higher in fruit from the westside of the canopy in Cabernet-Sauvignon and Merlot, whilst east facing cluster from the three varieties had higher malvidin-3-glucoside concentration. Besides the prior, significant differences in the concentration of phenolics lengthwise the ripening, were observed for the tree varieties under study.

CONCLUSIONS:

Under the conditions of this study, only minor differences on fruit composition by varieties and canopy side were observed, particularly when it comes to low molecular weight phenolics.

DOI:

Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paula A. Peña-Martínez, Liudis L. PINO María A. NAVARRO, Felipe LAURIE

Universidad de Talca, Chile.

Contact the author

Keywords

canopy side, phenolics, Cabernet-Sauvignon, Merlot, Carmenère

Citation

Related articles…

Sustainability in the winery sector: A European study

This paper investigates sustainability in European wineries. The growing body of literature on the subject of sustainability underlines the increasing attention on the environmental and social impacts of intensive and irresponsible wine production.

The sensory profile of astringency: application on Sangiovese wines

One of the main sensory characteristics of red wine is astringency, which can be defined as drying, puckering and roughing of the oral cavity after the exposure to tannin-rich wines. Tannins are the main responsible for the intensity of the sensation as well for the qualitative aspects of astringency. However, the total intensity of the sensation is not sufficient to fully characterize red wine astringency. Thirty-three different subqualities (Gawel et al. 2001) had been generated to describe the complexity of this multi perceptual phenomenon, which includes both tastes, tactile, and flavor sensations. So, how to feel tannins during tasting? In this study, we used a sensory method that combine the training for astringency subqualities with touch-standards and the CATA questions, usually applied in consumer science, to evaluate the astringency subqualities of different typologies of Sangiovese: commercial and experimental wines. Sangiovese wine represents a good model for the study of astringency because it is generally characterized by a high content of low and high molecular weight proantocyanidins. Commercial wines differed for percentage of Sangiovese (80-100 %) grapes used in winemaking and for designation (Toscana TS, Chianti Classico CH, Chianti Riserva CR, Morellino di Scansano MS). The astringency profile of wines changed as the percentage of Sangiovese increased. Positive subqualities as velvet, soft, mouthcoat, and rich highly characterized the Sangiovese wine belonging to TS and CR designations. Moreover, the astringency subqualities related to blending or wood aging, represented the drivers of quality of commercial Sangiovese wines.

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Méthodologie pour application et valorisation des études de terroir dans les caves cooperatives des Côtes du Rhône (France)

L’appellation d’origine contrôlée “Côtes du Rhône” se caractérise par une très forte implantation du mouvement coopératif. Afin de mieux exploiter le potentiel qualitatif de leurs terroirs, plusieurs coopératives élaborent des “cuvées terroir”, résultat des sélections de vendanges provenant de différents secteurs.