Macrowine 2021
IVES 9 IVES Conference Series 9 Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

Abstract

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character. The production of SO2-free wines may lead to the development of different spoiling microorganisms, which could lead to wine deterioration. One of the strategies suggested to avoid wine spoilage, is the non-Saccharomyces yeast inoculation, which prevent bacteria development. The objective of this work was to evaluate the bioprotective effect of a mixed inoculum of non-Saccharomyces yeasts (Torulaspora delbrueckii and Lachancea thermotolerans 70/30) in two consecutive vintages (2018 and 2019). Three strategies were carried out in triplicate: spontaneous fermentation in sulphited must, spontaneous fermentation in non sulphited must and inoculated fermentation (non-Saccharomyces mixed inoculum) in non sulphited must. In all cases, after 72 hours of fermentation the vats were seeded with a commercial Saccharomyces cerevisiae yeast. The presence in the medium of lactic and acetic bacteria and the chemical composition of the wines were evaluated. The obtained results indicated that the bioprotective effect of non-Saccharomyces yeasts inoculation was determined by the success of the implantation. Only in 2019 assays the inoculum was successfully implanted, and therefore, the bioprotective effect was like the observed for sulphited samples, since it limited the lactic and acetic bacteria population. This inoculation also modulated the physicochemical composition of the resulting wines. However, in 2018 the inoculum was not implanted and differences were not detected, neither in wines composition nor in the detected bacteria.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rocio Escribano Viana , Mª del Patrocinio Garijo, Rosa López, Pilar Santamaría, Ana Rosa Gutiérrez, Lucía González Arenzana.

ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain. ICVV, Instituto de Ciencias de la Vid y el Vino (University of La Rioja, La Rioja Government, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.

Contact the author

Citation

Related articles…

Effect of the plant sink/source balance on the chemical content of red table grapes (Vitis vinifera L.).

PPhloem transport of assimilates provides the materials needed for the growth and development of reproductive structures, storage and developing organs, and has long been recognized as a major determinant in crop yield.

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Evaluation of physiological properties of grapevine clones of ‘Tempranillo’ and ‘Graciano’ in DOCa Rioja (Spain)

In order to avoid the loss of grapevine intra-varietal diversity of DOCa Rioja grape varieties, Regional Government of La Rioja established a germplasm bank with more than 1.600 accessions, whose origin lies in the prospecting and sampling of ancient vineyards located throughout the whole region. 30 clones of Tempranillo and 13 clones of Graciano were preselected and multiplied in a new vineyard for further observations. The aim of this work is to describe the first results from the physiological characterization by an optical sensor of these preselected clones, which constitute the base of a new clonal selection that aims to increase the range of available certified clones and to improve the adaptation of these varieties to future objectives and environmental conditions.

Identifying wild Vitis riparia Michx clones as a source of rootstock to mitigate vigour and acclimation/deacclimation cycles of the scion

Grapevine rootstocks have traditionally been chosen in order to manage scion vigour, soil pests and soil conditions. Riparia Gloire de Montpellier (RGM) has been in use since the turn of the 19th century, over 100 years and still a remarkably stable source of phylloxera (Daktulosphaeria vitifoliae Fitch) resistance. The original source material was probably collected near the Missouri/Mississippi river confluence, a mid-continental but more southerly location in the United States. It has been hypothesized that more northerly selections of V. riparia Michx might improve both fall acclimation rate and depth of the scion, thus mitigating late fall frost and midwinter freeze damage.