Macrowine 2021
IVES 9 IVES Conference Series 9 Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Abstract

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2]. These contributions have frequently been associated with higher levels of polysaccharides, specifically the cell wall-derived mannoprotein [3]. Furthermore, mannoprotein structure and composition has been shown to vary between yeast strains, which in turn may influence their behaviour in the wine matrix [4-6]. However, non-Saccharomyces yeasts are typically weak fermentors and are frequently out-competed in the fermentation medium. An alternative strategy to their use as co-starter cultures is the isolation of the compound of interest for exogenous application to wine [7]. Indeed, the addition of exogenous mannoprotein-containing products derived from the cell wall of the wine yeast S. cerevisiae is a fairly common winemaking practice [8]. Nevertheless, the extraction of mannoproteins from non-Saccharomyces yeasts has not yet been well described. AIM: This study aimed to optimise the extraction of mannoproteins from four non-Saccharomyces strains, and to perform a preliminary investigation into the compositional differences of the mannoproteins obtained from the different species.

METHODS: Four non-Saccharomyces wine strains, Saccharomyces cerevisiaeSaccharomyces boulardiiMetschnikowia fructicola and Torulaspora delbrueckii, were exposed to combined methods with varied parameters of ultrasound and enzymatic extraction with β-glucanase to optimise mannoprotein yield. Colorimetric assays were used to quantify protein and carbohydrate concentrations in the extracts.

RESULTS: Yeast cells subjected to 4 min of ultrasound treatment applied at 80% of the maximum amplitude with a 50% duty cycle, followed by an enzymatic treatment of 4000 U lyticase per g dry cells weight, showed the highest yield of mannoproteins from all species. Furthermore, preliminary evaluation of the obtained extracts revealed differences in carbohydrate/protein ratios between species and with increased enzyme incubation time, as demonstrated by the higher ratios obtained for T. Delbrueckii and S. cerevisiae after almost all treatments, in comparison to M. fructicola and S. boulardii.

CONCLUSIONS: The results obtained in this study form an important step towards further characterisation of extraction treatment impact and yeast species effect on the extracted mannoproteins. Their impact on the carbohydrate/protein ratio in particular is an important factor to consider for applications such as wine protein haze reduction and tartrate stabilisation, and requires more in-depth investigation of isolated mannoproteins.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Carla Snyman, Benoit DIVOL, Matteo MARANGON, Julie MEKOUE NGUELA, Nathalie SCIECZKOWSKI

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland 7602, South Africa, Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell’Università, 16, 35020, Legnaro, Padova, Italy, Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France, Lallemand SAS, 19 rue des briquetiers, BP 59, 31702 Blagnac, France

Contact the author

Keywords

mannoprotein; yeast; non-saccharomyces; extraction; wine; ultrasound; β-glucanase

Citation

Related articles…

Effects of hormone- and natural-based elicitors at the transcriptomic level in berries of cv. Tempranillo

One of the most important effects of climate change in wine-growing areas is the advance of phenological stages, especially concerning early berry ripening. In the hottest seasons, this results in a lack of synchrony between sugar and phenolic ripeness. In order to cope with this fact, a general effort is being made by researchers and growers aiming at delaying ripening through different strategies. One of the proposed approaches is the application of elicitors. This study aims to assess the effect at the transcriptomic level of the application of three hormone- and natural-based elicitors in Tempranillo.

Transition metals and light-dependent reactions: application of a response surface methodology approach

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST).

Evaluation of interception traps for capture of Xylotrechus arvicola (Coleoptera: Cerambycidae) in vineyards varieties from Protected Denomination of Origin León

Xylotrechus arvicola (Coleoptera: Cerambycidae) is a pest in vineyards (Vitis vinifera) in the main Spain wine-producing regions with Protected Denomination of Origin (PDO). The action of the larvae, associated to the spreading of wood fungi, causes damage especially in important varieties of V. vinifera. X. arvicola females lay eggs concentrated in cracks or under the rhytidome in the wood vines, which allows the emerging larvae to get into the wood and make galleries inside the plant being then necessary to prune intensively or to pull up the bored plants (1). The objective of the study was to evaluate captures of X. arvicola insects in five varieties of V. vinifera in PDO León.

Phylloxera root infection drives vineyard water

Most of the rootstocks used in viticulture today are partly resistant against grape phylloxera (Daktulosphaira vitifoliae Fitch) and host phylloxera on the root system without conspicuous negative impacts on fruit production).

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Macrowine 2021
IVES 9 IVES Conference Series 9 Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 3, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Process for partial or total dealcoholization of wine using a post-fermentation microbiological technique

The dealcoholized wine sector is experiencing strong market growth, driven by increasing consumer demand.

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.