Macrowine 2021
IVES 9 IVES Conference Series 9 Gamay and Gamaret winemaking processes using stems: impact on the wine chemical and organoleptic characteristics

Gamay and Gamaret winemaking processes using stems: impact on the wine chemical and organoleptic characteristics

Abstract

AIM: Stalks are empirically known to bring many benefits to the wine such as alcoholic reduction, color protection or improvement of the tannic intensity. Not much used on Swiss grape varieties, the aim of this study was to identify the relevance of using this type of winemaking in the case of Gamay and Gamaret red grape varieties.

METHODS: Gamay and Gamaret grapes from a vineyards in Gland (Switzerland) were harvested and treated according to three modalities: fully destemmed used as control, 20% and 40% either whole grapes or stems added to the rest of the destemmed harvest. The influence of the stalks on the wine organoleptic properties was measured using different classical FTIR and colorimetric methods (alcohol, acidity, pH, SO2 …). Polyphenol content was evaluated using spectrophotometer measurements and concentration of flavanols and proanthocyanins in wine samples determined by HPLC-FLD-MS/MS. Sensory analysis were also performed in order to measure the impact on the wines.

RESULTS: Results showed that the total polyphenolic content was lower for trials with non-destemmed grapes and higher for the ones where stems were added. According to the tannin content, no significant differences were found between the modalities for the gamay grape variety. For the gamaret grape variety, the values were lower than the control when 20% and 40% of non-destemmed grapes were used. Planned sensory analysis should allow us to know the impact on the aromatic characters of these wines.

CONCLUSIONS:

This study allows us to acquire knowledge about winemaking processes performed using non-destemmed grapes and their impact on the wine characteristics. Both chemical composition and organoleptic characterization were taken into account

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marie Blackford, Janina IMHOF 2,  Julie ROESLE-FUCHS 2, Fabrice LORENZINI 1,  Gilles BOURDIN 1,  Benoit BACH 2 

Marie Blackford – 1. AGROSCOPE , Nyon, Switzerland 2. Changins, Viticulture and oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon 1, Switzerland ,Montaine COMBY 1,2,  Janina IMHOF 2,  Julie ROESLE-FUCHS 2,  Ágnes  DIENES-NAGY 1,  Fabrice LORENZINI 1,  Gilles BOURDIN 1,  Benoit BACH 2  1 AGROSCOPE , Nyon, Switzerland 2 Changins, Viticulture and oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon 1, Switzerland

Contact the author

Keywords

stem, whole cluster, winemaking, polyphenols

Citation

Related articles…

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.