Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Abstract

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry. The objective of the study was to investigate the changes in the composition of polysaccharides in Cabernet-Sauvignon musts and wines made with grapes treated with microwaves.

METHODS: Red grapes were destemmed and crushed and divided into two batches. One batch was treated with MW at 700 Watts for 12 min and the other batch was not treated to be used as control. Three control microvinifications and three microvinifications treated with MW were carried out, all of them with three days of maceration. The content of each polysaccharide family in the samples was estimated as described by 1 and 2. MW improved the breakdown of cell walls of crushed grapes, thereby it significantly increased the content of polysaccharides rich in arabinose and galactose (PRAG), rhamnogalacturonans-II (RG-II), homogalacturonans (HL) and mannans/mannoproteins (MP) in musts. However, no significant differences were observed between the control and MW wines in the content of PRAG, RG-II, HL and MP. 

CONCLUSIONS

MW allowed to increase the release of polysaccharides in must, although its effectiveness was not maintained in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belén Ayestarán 

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain,Leticia, MARTÍNEZ-LAPUENTE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Mikel LANDIN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Raquel, MUÑOZ GARCÍA, Facultad de Ciencias y Tecnologías Químicas (Universidad de Castilla-La Mancha), Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain Zenaida, GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

microwave, polysaccharides, red must, red wine

Citation

Related articles…

Revealing the Barossa zone sub-divisions through sensory and chemical analysis of Shiraz wine

The Barossa zone is arguably one of the most well-recognised wine producing regions in Australia and internationally; known mainly for the production of its distinct Shiraz wines. However, within the broad Barossa geographical delimitation, a variation in terroir can be perceived and is expressed as sensorial and chemical profile differences between wines. This study aimed to explore the sub-division classification across the Barossa region using chemical and sensory measurements. Shiraz grapes from 4 different vintages and different vineyards across the Barossa (2018, n = 69; 2019, n = 72; 2020, n = 79; 2021, n = 64) were harvested and made using a standardised small lot winemaking procedure. The analysis involved a sensory descriptive analysis with a highly trained panel and chemical measurement including basic chemistry (e.g. pH, TA, alcohol content, total SO2), phenolic composition, volatile compounds, metals, proline, and polysaccharides. The datasets were combined and analysed through an unsupervised, clustering analysis. Firstly, each vintage was considered separately to investigate any vintage to vintage variation. The datasets were then combined and analysed as a whole. The number of sub-divisions based on the measurements were identified and characterised with their sensory and chemical profile and some consistencies were seen between the vintages. Preliminary analysis of the sensory results showed that in most vintages, two major groups could be identified characterised with one group showing a fruit-forward profile and another displaying savoury and cooked vegetables characters. The exploration of distinct profiles arising from the Barossa wine producing region will provide producers with valuable information about the regional potential of their wine assisting with tools to increase their target market and reputation. This study will also provide a robust and comprehensive basis to determine the distinctive terroir characteristics which exist within the Barossa wine producing region.

High resolution climate spatial analysis of European winegrowing regions

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties.

The albarizas and the viticultural zoning of Jerez­-Xérès-Sherry and Manzanilla-Sanlúcar de Barrameda registered apellations of origin (Cadiz, Spain)

Le terme ”Albariza” (du latin “albus“, blanc) déterminait à l’origine un type particulier du terrain calcaire, mais à présent il sert aussi à définir les sols et la bibliographie géologique actuelle le cite également pour de roches sédimentaires originaires du Neogene Betic.

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

STATISTICAL COMPARISON OF GROWTH PARAMETERS OF NINE BIOPROTECTION STRAINS IMPLEMENTED ON ARTIFICIALLY CONTAMINATED SYNTHETIC MUST

In recent years, consumer demand for products without chemical additives increased, becoming a priority for the wine sector. SO₂ is widely used for its multiple properties including antiseptics, antioxidants and antioxidasics and the strategy of bioprotection in winemaking represents now an alternative to this chemical additive. In oenology, results have highlighted the interest of bioprotection to limit the development of microorganisms like Hanseniaspora uvarum and thus reduce the doses of sulphite. Indeed, this species is considered because of its acetic acid and methyl butyl acetate production, the latter can cover the varietal character of wines.