Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Abstract

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry. The objective of the study was to investigate the changes in the composition of polysaccharides in Cabernet-Sauvignon musts and wines made with grapes treated with microwaves.

METHODS: Red grapes were destemmed and crushed and divided into two batches. One batch was treated with MW at 700 Watts for 12 min and the other batch was not treated to be used as control. Three control microvinifications and three microvinifications treated with MW were carried out, all of them with three days of maceration. The content of each polysaccharide family in the samples was estimated as described by 1 and 2. MW improved the breakdown of cell walls of crushed grapes, thereby it significantly increased the content of polysaccharides rich in arabinose and galactose (PRAG), rhamnogalacturonans-II (RG-II), homogalacturonans (HL) and mannans/mannoproteins (MP) in musts. However, no significant differences were observed between the control and MW wines in the content of PRAG, RG-II, HL and MP. 

CONCLUSIONS

MW allowed to increase the release of polysaccharides in must, although its effectiveness was not maintained in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belén Ayestarán 

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain,Leticia, MARTÍNEZ-LAPUENTE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Mikel LANDIN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Raquel, MUÑOZ GARCÍA, Facultad de Ciencias y Tecnologías Químicas (Universidad de Castilla-La Mancha), Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain Zenaida, GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

microwave, polysaccharides, red must, red wine

Citation

Related articles…

The science of fungi in grapevine: An essential new book covering all aspects of fungi in viticulture

Grapevine is one of the world’s most important cultivated plants, domesticated from the wild vine over 11,000 years ago. The fungi associated with it are doubtless as old as the plant itself. Despite their co-evolution with the vine over the centuries, it was only with the invention of the microscope in the seventeenth century that fungi started to be recognised.

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

TerraClim, an online spatial decision support system for the wine industry

Climate projections for the future suggest favourable conditions for some wine producing regions, but challenging conditions for others. For instance, temperature increases are likely to shift grapevine phenology, ripening and harvest dates, and potentially affect grape quality and yield.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Enological potential of red grapes: cultivars and geographic origin of vineyards

The study of technologic and phenolic maturation is very efficient to determinate quality potential of red grapes cultivars and clones under different maturity levels or geographic origins