Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Abstract

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry. The objective of the study was to investigate the changes in the composition of polysaccharides in Cabernet-Sauvignon musts and wines made with grapes treated with microwaves.

METHODS: Red grapes were destemmed and crushed and divided into two batches. One batch was treated with MW at 700 Watts for 12 min and the other batch was not treated to be used as control. Three control microvinifications and three microvinifications treated with MW were carried out, all of them with three days of maceration. The content of each polysaccharide family in the samples was estimated as described by 1 and 2. MW improved the breakdown of cell walls of crushed grapes, thereby it significantly increased the content of polysaccharides rich in arabinose and galactose (PRAG), rhamnogalacturonans-II (RG-II), homogalacturonans (HL) and mannans/mannoproteins (MP) in musts. However, no significant differences were observed between the control and MW wines in the content of PRAG, RG-II, HL and MP. 

CONCLUSIONS

MW allowed to increase the release of polysaccharides in must, although its effectiveness was not maintained in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belén Ayestarán 

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain,Leticia, MARTÍNEZ-LAPUENTE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Mikel LANDIN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Raquel, MUÑOZ GARCÍA, Facultad de Ciencias y Tecnologías Químicas (Universidad de Castilla-La Mancha), Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain Zenaida, GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

microwave, polysaccharides, red must, red wine

Citation

Related articles…

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.

PERCEPTUAL INTERACTIONS PHENOMENA INVOLVING VARIOUS VOLATILE COMPOUND FAMILIES LINKED TO SOME FRUITY NOTES IN BORDEAUX RED WINES

Fruity notes play a key role in the consumer’s appreciation of Bordeaux red wines. If literature provides a lot of knowledge about the nature of volatile compounds involved in this fruity expression, the sensory phenomena involving these compounds in mixture still need to be explored. Considering previous sensory works about the impact of esters and some overripening compounds, the goal of this work was to study the implication of perceptual interactions involving red wine odorant compounds of diverse origins and described as potentially affecting fruity aromatic expression.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Validation of phenological models for grapevine in the Veneto region

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM).

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).