Macrowine 2021
IVES 9 IVES Conference Series 9 Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Microwave treatment of grapes: effect on the must and red wine polysaccharide composition

Abstract

AIM: The application of microwaves (MW) to the grape is a technique to reduce the contact time with pomace because it allows to break the cell walls of the berry. The objective of the study was to investigate the changes in the composition of polysaccharides in Cabernet-Sauvignon musts and wines made with grapes treated with microwaves.

METHODS: Red grapes were destemmed and crushed and divided into two batches. One batch was treated with MW at 700 Watts for 12 min and the other batch was not treated to be used as control. Three control microvinifications and three microvinifications treated with MW were carried out, all of them with three days of maceration. The content of each polysaccharide family in the samples was estimated as described by 1 and 2. MW improved the breakdown of cell walls of crushed grapes, thereby it significantly increased the content of polysaccharides rich in arabinose and galactose (PRAG), rhamnogalacturonans-II (RG-II), homogalacturonans (HL) and mannans/mannoproteins (MP) in musts. However, no significant differences were observed between the control and MW wines in the content of PRAG, RG-II, HL and MP. 

CONCLUSIONS

MW allowed to increase the release of polysaccharides in must, although its effectiveness was not maintained in wines

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Belén Ayestarán 

Institute of Grapevine and Wine Sciences (ICVV), Logroño, Spain,Leticia, MARTÍNEZ-LAPUENTE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Mikel LANDIN, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain Raquel, MUÑOZ GARCÍA, Facultad de Ciencias y Tecnologías Químicas (Universidad de Castilla-La Mancha), Avda. Camilo José Cela, s/n, 13071 Ciudad Real, Spain Zenaida, GUADALUPE, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Finca de La Grajera, Ctra. Burgos 6, 26007 Logroño, Spain

Contact the author

Keywords

microwave, polysaccharides, red must, red wine

Citation

Related articles…

Water retention properties of viticultural calcisols from D. O. P. Valdepeñas (Spain)

A good knowledge of the soil physicochemical properties, as well as its ability to retain and put the necessary water available to the plants, is essential when it comes at the design of an irrigation plan.

Variability of Tempranillo grape quality within the Ribera del Duero do (Spain) and relationships with climatic characteristics

The aim of this research was to evaluate the variability of ripening characteristics of the Tempranillo variety within the Ribera del Duero Designation of Origin (Spain) and it relationships with soil characteristics

Risposte enologiche del Nero d’Avola su suoli a diverso grado di salinità

Vengono riportati i risultati enologici di uno studio condotto sul Nero d’Avola in un tipico ambiente viticolo siciliano, in cui insistono suoli che presentano un diverso grado di salinità.

Regenerative agricultural approaches to improve ecosystem services in Mediterranean vineyards

REVINE is a 3 year European projected funded by PRIMA programme which proposes the adoption of regenerative agriculture practices with an innovative and original perspective, in order to improve the resilience of vineyards to climate change in the Mediterranean area. The potential for innovation lies in developing and combining new approaches that make agriculture more environmentally sustainable and enable a circular economy capable of improving farmers’ incomes. Primarily REVINE aims to improve soil health and biodiversity by promoting the multiplication of soil saprophytic microorganisms and the presence of useful microorganisms linked to the life cycle of the plant, such as rhizobacteria (PGPR) and fungi (PGPF) that promote plant growth which, in addition to increasing plant performance, increase tolerance to biotic and abiotic stresses.

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.