Macrowine 2021
IVES 9 IVES Conference Series 9 Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Abstract

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation. In the case of monovarietal wines blending is forbidden, however there is no method to authenticate their status, and for this reason adulteration can are difficult to identify. Fourier Transform Infrared Spectroscopy (FT-IR) has proven successful for the discrimination of wines based on several parameters such as geographical origin and type of aging[1], while the use of Neural Networks is now used more often for the development of prediction models. FT-IR spectroscopy coupled with Neural Networks have been used to develop a prediction model for the discrimination of single varietal and blended wines. Generalized RSquare for the training set was 0,9011 and 0,689 for the validation set, while the -Loglikelihood was 3,918 for the training and 0,111 for the validation set. The misclassified rate was 0,03 for the training set and 0,11 for the validation set, showing very good potential for the use of IR spectroscopy for the authentication of single varietal and blended wines.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marianthi Basalekou

University of West Attica,Christos, PAPPAS, Agricultural University of Athens Petros, TARANTILIS, Agricultural University of Athens Anna, Georgoulaki, University of West Attica Anna, STEFOU, University of West Attica

Contact the author

Keywords

ftir, wine, blend, neural networks

Citation

Related articles…

Bioprotective effect of non-Saccharomyces yeasts in wines made without SO2

The sulphur dioxide (SO2) is the most widely used additive in the wine industry because of its preservative action. However, in recent years the number of wineries that produce wines without SO2 has increased significantly because its allergenic character.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

Arsenic in berries and its correlation with natural soil content: experience in Trentino (Italy)

l lavoro presenta l’evoluzione dei contenuti di arsenico nelle uve durante lo sviluppo e la maturazione, e la sua distribuzione nell’acino; verifica inoltre la relazione tra i contenuti di As nelle uve

Influence of Potential Alcohol and pH Adjustment on Polyphenols and Sensory Characteristics of Red Wines Produced at Different Harvest Time Points

Wine quality is influenced by grape maturity, typically monitored by measuring sugar content and acidity.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.