Macrowine 2021
IVES 9 IVES Conference Series 9 Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Abstract

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation. In the case of monovarietal wines blending is forbidden, however there is no method to authenticate their status, and for this reason adulteration can are difficult to identify. Fourier Transform Infrared Spectroscopy (FT-IR) has proven successful for the discrimination of wines based on several parameters such as geographical origin and type of aging[1], while the use of Neural Networks is now used more often for the development of prediction models. FT-IR spectroscopy coupled with Neural Networks have been used to develop a prediction model for the discrimination of single varietal and blended wines. Generalized RSquare for the training set was 0,9011 and 0,689 for the validation set, while the -Loglikelihood was 3,918 for the training and 0,111 for the validation set. The misclassified rate was 0,03 for the training set and 0,11 for the validation set, showing very good potential for the use of IR spectroscopy for the authentication of single varietal and blended wines.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marianthi Basalekou

University of West Attica,Christos, PAPPAS, Agricultural University of Athens Petros, TARANTILIS, Agricultural University of Athens Anna, Georgoulaki, University of West Attica Anna, STEFOU, University of West Attica

Contact the author

Keywords

ftir, wine, blend, neural networks

Citation

Related articles…

Parcours de découverte des terroirs viticoles

A partir des recherches conduites sur la caractérisation des terroirs viticoles par des chercheurs de l’Unité de Recherches Vigne et Vin (1, 2, 3, 4, 5) du Centre INRA d’Angers, Terre des Sciences, le Centre de Culture Scientifique et Technique d’Angers (CCSTA) a mis au point un parcours de découverte d’une journée dans le vignoble angevin avec une approche pluridisciplinaire.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Learning from remote sensing data: a case study in the Trentino region 

Recent developments in satellite technology have yielded a substantial volume of data, providing a foundation for various machine learning approaches. These applications, utilizing extensive datasets, offer valuable insights into Earth’s conditions. Examples include climate change analysis, risk and damage assessment, water quality evaluation, and crop monitoring. Our study focuses on exploiting satellite thermal and multispectral imaging, and vegetation indexes, such as NDVI, in conjunction with ground truth information about soil type, land usage (forest, urban, crop cultivation), and irrigation water sources in the Trentino region in North-East of Italy.

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.