Macrowine 2021
IVES 9 IVES Conference Series 9 Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Abstract

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation. In the case of monovarietal wines blending is forbidden, however there is no method to authenticate their status, and for this reason adulteration can are difficult to identify. Fourier Transform Infrared Spectroscopy (FT-IR) has proven successful for the discrimination of wines based on several parameters such as geographical origin and type of aging[1], while the use of Neural Networks is now used more often for the development of prediction models. FT-IR spectroscopy coupled with Neural Networks have been used to develop a prediction model for the discrimination of single varietal and blended wines. Generalized RSquare for the training set was 0,9011 and 0,689 for the validation set, while the -Loglikelihood was 3,918 for the training and 0,111 for the validation set. The misclassified rate was 0,03 for the training set and 0,11 for the validation set, showing very good potential for the use of IR spectroscopy for the authentication of single varietal and blended wines.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marianthi Basalekou

University of West Attica,Christos, PAPPAS, Agricultural University of Athens Petros, TARANTILIS, Agricultural University of Athens Anna, Georgoulaki, University of West Attica Anna, STEFOU, University of West Attica

Contact the author

Keywords

ftir, wine, blend, neural networks

Citation

Related articles…

Application of nitrogen forms such as nitrate, urea, and amino acids effects on leaf and berry physiology and wine quality

Nitrogen (N) uptake by grapevine roots in forms like nitrate, ammonium, urea, or amino acids influences vegetative and generative growth, impacting grape quality and wine sensory profile. The study examined nitrogen’s influence on phenolic compounds in leaves, berries, and wine across different scales — hydroponics, soil culture, and vineyard trials. Nitrogen forms altered metabolite patterns in leaves and wine significantly, affecting aroma and flavor. Key nitrogen assimilation enzymes (NR, NiR, GS) in grapevine rootstocks responded to nitrogen forms and timing. Hydroponically grown rootstocks fertilized with various forms showed differences in enzyme expression and activity, suggesting rootstocks can assimilate amino acid glutamine (Gln).

Investigating biotic and abiotic stress responses in grafted grapevine cultivars: A comparative study of Cabernet-Sauvignon and Cabernet Volos on M4 rootstock

When grapevine plants are transplanted into already established vineyards, they face multiple challenges, including adverse climate, heavy metal accumulation from agronomic practices [1], and pressure from highly adapted pathogens [2].

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Adapting Portuguese vineyards to climate change: impact of different irrigation regimes on phenolic composition

Climate change has led to increased extreme weather events, such as severe droughts and intense rainfall, with regions like Alentejo and Algarve in Portugal, being particularly affected.

Physiological response of new cultivars resistant to fungi confronted to drought in a semi-arid Mediterranean area

Water is one of the most limiting factors for viticulture in Mediterranean regions. Former researches showed that water shortage hampers both vegetative and reproductive developments. INRA is running programs to breed varieties carrying QTL of tolerance to major fungi, i.e. powdery and downy mildews. Some varieties have been already certified or are close to be certified. However, little is known about the response of these varieties to water deficit, which behavior is critical for their development. This study characterized physiological responses of 4 new varieties to water deficit and described relationship between them.