Macrowine 2021
IVES 9 IVES Conference Series 9 Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Abstract

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation. In the case of monovarietal wines blending is forbidden, however there is no method to authenticate their status, and for this reason adulteration can are difficult to identify. Fourier Transform Infrared Spectroscopy (FT-IR) has proven successful for the discrimination of wines based on several parameters such as geographical origin and type of aging[1], while the use of Neural Networks is now used more often for the development of prediction models. FT-IR spectroscopy coupled with Neural Networks have been used to develop a prediction model for the discrimination of single varietal and blended wines. Generalized RSquare for the training set was 0,9011 and 0,689 for the validation set, while the -Loglikelihood was 3,918 for the training and 0,111 for the validation set. The misclassified rate was 0,03 for the training set and 0,11 for the validation set, showing very good potential for the use of IR spectroscopy for the authentication of single varietal and blended wines.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marianthi Basalekou

University of West Attica,Christos, PAPPAS, Agricultural University of Athens Petros, TARANTILIS, Agricultural University of Athens Anna, Georgoulaki, University of West Attica Anna, STEFOU, University of West Attica

Contact the author

Keywords

ftir, wine, blend, neural networks

Citation

Related articles…

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

Targeted and untargeted 1H-NMR analysis for sparkling wine’s authenticity

Studies on wineomics (wine’s metabolome) have increased considerably over the last two decades. Wine results from many environmental, human and biological factors leading to a specific metabolome for each terroir. NMR metabolomics is a particularly effective tool for studying the metabolome since it allows the rapid and simultaneous detection of major compounds from several chemical families.1 Quantitative NMR has already proven its effectiveness in monitoring the authenticity of still wines.

Vitamin content of grape musts and yeast nutrition: A review

The management of yeast nutrition is an essential approach for a better control over wine fermentation process. Most of the researches on this subject in the last decades focused on nitrogen nutrition. However, vitamins, while being key compounds for yeast metabolism as co-factors for numerous enzymatic activities, were left mostly unexplored.

Screening of Italian red wines for quercetin precipitation risk index

Quercetin (Q), a phenolic compound released from grape skins during red wine maceration, has been identified as a source of instability in bottled wines, particularly Sangiovese, due to crystallisation. This phenomenon represents an economic challenge for producers and affects wine clarity and consumer perception.

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit