Macrowine 2021
IVES 9 IVES Conference Series 9 Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Neural networks and ft-ir spectroscopy for the discrimination of single varietal and blended wines. A preliminary study.

Abstract

Blending wines from different grape varieties is often used in order to increase wine complexity and balance. Due to their popularity, several types of blends such as the Bordeaux blend, are protected by PDO legislation. In the case of monovarietal wines blending is forbidden, however there is no method to authenticate their status, and for this reason adulteration can are difficult to identify. Fourier Transform Infrared Spectroscopy (FT-IR) has proven successful for the discrimination of wines based on several parameters such as geographical origin and type of aging[1], while the use of Neural Networks is now used more often for the development of prediction models. FT-IR spectroscopy coupled with Neural Networks have been used to develop a prediction model for the discrimination of single varietal and blended wines. Generalized RSquare for the training set was 0,9011 and 0,689 for the validation set, while the -Loglikelihood was 3,918 for the training and 0,111 for the validation set. The misclassified rate was 0,03 for the training set and 0,11 for the validation set, showing very good potential for the use of IR spectroscopy for the authentication of single varietal and blended wines.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marianthi Basalekou

University of West Attica,Christos, PAPPAS, Agricultural University of Athens Petros, TARANTILIS, Agricultural University of Athens Anna, Georgoulaki, University of West Attica Anna, STEFOU, University of West Attica

Contact the author

Keywords

ftir, wine, blend, neural networks

Citation

Related articles…

Methodology of climate modelling using land surface temperature downscaling: case study case of Gironde (France)

Aim: Climate modelling in viticulture introduced new challenges such as high spatio-temporal monitoring and the use of dependable time series and robustness modelling methods. Land surface temperature (LST) is widely used and particularly MODIS thermal satellite images due to their high temporal resolution (four images per day).

Unconventional methods to delve deeper into the influence of temperature and nutrition on Chardonnay wine profiles

Temperature and yeast nutrition profoundly impact wine quality and sensory attributes by modulating yeast aroma production and release during fermentation. While temperature and nitrogen’s individual effects are well-studied, their combined influence, including nutrient type and addition timing, remains underexplored. hence, this study aimed to investigate the simultaneous effects of these factors on fermentation kinetics, aroma production and sensory profile, particularly in a Chardonnay wine production selected as a quite aromatically neutral base.

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.