Macrowine 2021
IVES 9 IVES Conference Series 9 Distribution analysis of myo and scyllo-inositol in natural grape must

Distribution analysis of myo and scyllo-inositol in natural grape must

Abstract

As it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must. Indeed, these polyalcohols, which originate in the grape berries and are not retained by the resins used for the concentration process, are not naturally present in other commercial sugars from different botanical origins [1]. However, up to now, no study has exhaustively investigated the concentration variability of myo and scyllo-inositol in natural grape musts and for this reason in the definition of rectified concentrated grape must the only presence of meso-inositol is prescribed without reporting any minimum limit [2]. In this work, 200 authentic Italian grape musts were collected and the concentration of the two polyalcohols was determined. The sampling was done during 2019 and 2020 harvest in 17 different Italian Regions (Abruzzo, Basilicata, Calabria, Campania, Emilia Romagna, Friuli Venezia Giulia, Lazio, Lombardy, Marche, Piedmont, Puglia, Sardinia, Sicily, Tuscany, Trentino-Alto Adige, Umbria, and Veneto). A total of 85 different grape varieties were considered to describe the natural variability. Quantification of myo and scyllo-inositol was performed by gas chromatography after silylation. The method used was obtained by modifying the official method RESOLUTION OIV-OENO 419C-2015 concerning the quantification of myo and scyllo -inositol in rectified concentrated grape musts [3]. The aim of our work was to create an extensive data bank and to investigate the impact of the geographical origin, grape variety and the different year of harvest on the concentration of myo and scyllo-inositol. Furthermore, it has been verified the influence of the process to obtain the concentrated grape must starting from the natural one on the content of the two polyalcohols.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mauro Paolini

Fondazione Edmund Mach – San Michele all’Adige (Italy),Letizia, ALLARI, Unione Italiana Vini – Verona (Italy) Loris, TONIDANDEL, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Matteo, PERINI, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Katia, GUARDINI, Unione Italiana Vini – Verona (Italy) Roberto, LARCHER, Fondazione Edmund Mach – S. Michele all’Adige (Italy)

Contact the author

Keywords

characterization, myo-inositol, scyllo-inosytol, grape must, data bank

Citation

Related articles…

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices.

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.

TerraClim, an online spatial decision support system for the wine industry

Climate projections for the future suggest favourable conditions for some wine producing regions, but challenging conditions for others. For instance, temperature increases are likely to shift grapevine phenology, ripening and harvest dates, and potentially affect grape quality and yield.

Aroma profile of Oenococcus oeni strains in different life styles

AIM: Three Oenococcus oeni strains previously isolated from spontaneous malolactic fermentation were characterized for their surface properties. Planktonic and sessile cells were investigated for aroma compounds production and the expression of genes involved in citrate and malate metabolism (citE and mleA, respectively), glycoside-hydrolase (dsrO), fructansucrase (levO), rhamnosyl-transferase (wobB), glycosyltransferase (wobO).