Macrowine 2021
IVES 9 IVES Conference Series 9 Distribution analysis of myo and scyllo-inositol in natural grape must

Distribution analysis of myo and scyllo-inositol in natural grape must

Abstract

As it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must. Indeed, these polyalcohols, which originate in the grape berries and are not retained by the resins used for the concentration process, are not naturally present in other commercial sugars from different botanical origins [1]. However, up to now, no study has exhaustively investigated the concentration variability of myo and scyllo-inositol in natural grape musts and for this reason in the definition of rectified concentrated grape must the only presence of meso-inositol is prescribed without reporting any minimum limit [2]. In this work, 200 authentic Italian grape musts were collected and the concentration of the two polyalcohols was determined. The sampling was done during 2019 and 2020 harvest in 17 different Italian Regions (Abruzzo, Basilicata, Calabria, Campania, Emilia Romagna, Friuli Venezia Giulia, Lazio, Lombardy, Marche, Piedmont, Puglia, Sardinia, Sicily, Tuscany, Trentino-Alto Adige, Umbria, and Veneto). A total of 85 different grape varieties were considered to describe the natural variability. Quantification of myo and scyllo-inositol was performed by gas chromatography after silylation. The method used was obtained by modifying the official method RESOLUTION OIV-OENO 419C-2015 concerning the quantification of myo and scyllo -inositol in rectified concentrated grape musts [3]. The aim of our work was to create an extensive data bank and to investigate the impact of the geographical origin, grape variety and the different year of harvest on the concentration of myo and scyllo-inositol. Furthermore, it has been verified the influence of the process to obtain the concentrated grape must starting from the natural one on the content of the two polyalcohols.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mauro Paolini

Fondazione Edmund Mach – San Michele all’Adige (Italy),Letizia, ALLARI, Unione Italiana Vini – Verona (Italy) Loris, TONIDANDEL, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Matteo, PERINI, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Katia, GUARDINI, Unione Italiana Vini – Verona (Italy) Roberto, LARCHER, Fondazione Edmund Mach – S. Michele all’Adige (Italy)

Contact the author

Keywords

characterization, myo-inositol, scyllo-inosytol, grape must, data bank

Citation

Related articles…

New ways of grape pomaces valorization: production of functional beverages or nutraceuticals

The wine industry generates each year 20 million tons of by-products. Among them grape pomaces represent a big part that can be considered as a source of potentially bioactive molecules such as polyphenols. Kombucha fermentation is an ancestral process which allow to increase the biological properties of tea by the action of a microbial consortium formed by yeasts and bacteria called scoby.

H-NMR metabolic profiling of wines from three cultivars, three soil types and two contrasting vintages

Differences in wine flavour proceed primarily from grape quality. Environmental factors determined by the climate, soil and training systems modify many grape and wine quality traits. Metabolic profiling based on proton nuclear magnetic resonance (1H-NMR) spectra has been proved to be useful to study multifactorial effects of the vine environment on intricate grape quality traits. The capacity of this method to discriminate the environmental effects on wine has to be demonstrated.

On the stability of spectral features of four vine varieties in Brazil, Chile and France

Satellite images of vineyards in France, Chile, and Brazil are used to study spectral differences between the vine varieties Cabernet Sauvignon, Merlot, Pinot Noir, and Chardonnay, to verify if features of a given variety are conserved at vineyards in completely different terroirs.

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).