Macrowine 2021
IVES 9 IVES Conference Series 9 Distribution analysis of myo and scyllo-inositol in natural grape must

Distribution analysis of myo and scyllo-inositol in natural grape must

Abstract

As it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must. Indeed, these polyalcohols, which originate in the grape berries and are not retained by the resins used for the concentration process, are not naturally present in other commercial sugars from different botanical origins [1]. However, up to now, no study has exhaustively investigated the concentration variability of myo and scyllo-inositol in natural grape musts and for this reason in the definition of rectified concentrated grape must the only presence of meso-inositol is prescribed without reporting any minimum limit [2]. In this work, 200 authentic Italian grape musts were collected and the concentration of the two polyalcohols was determined. The sampling was done during 2019 and 2020 harvest in 17 different Italian Regions (Abruzzo, Basilicata, Calabria, Campania, Emilia Romagna, Friuli Venezia Giulia, Lazio, Lombardy, Marche, Piedmont, Puglia, Sardinia, Sicily, Tuscany, Trentino-Alto Adige, Umbria, and Veneto). A total of 85 different grape varieties were considered to describe the natural variability. Quantification of myo and scyllo-inositol was performed by gas chromatography after silylation. The method used was obtained by modifying the official method RESOLUTION OIV-OENO 419C-2015 concerning the quantification of myo and scyllo -inositol in rectified concentrated grape musts [3]. The aim of our work was to create an extensive data bank and to investigate the impact of the geographical origin, grape variety and the different year of harvest on the concentration of myo and scyllo-inositol. Furthermore, it has been verified the influence of the process to obtain the concentrated grape must starting from the natural one on the content of the two polyalcohols.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mauro Paolini

Fondazione Edmund Mach – San Michele all’Adige (Italy),Letizia, ALLARI, Unione Italiana Vini – Verona (Italy) Loris, TONIDANDEL, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Matteo, PERINI, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Katia, GUARDINI, Unione Italiana Vini – Verona (Italy) Roberto, LARCHER, Fondazione Edmund Mach – S. Michele all’Adige (Italy)

Contact the author

Keywords

characterization, myo-inositol, scyllo-inosytol, grape must, data bank

Citation

Related articles…

Evaluation des aptitudes œnologiques des raisins rouges avec l’étude de certains nouveaux indices de maturité phénolique

Pour obtenir des vins d’une certaine gamme, il faut connaître les paramètres liés à la composition de la baie et introduire non seulement les paramètres classiques, c’est-à-dire sucres et acidité, mais aussi les paramètres qui tiennent compte

In search of the taste of terroir – a challenge for sensory science

The definition of terroir has evolved throughout history, from something clearly negative in the XVIth-XVIIIth century to a complex multi-parametric construct with positive connotations but also with many scientific unknowns. Terroir has always been linked more or less explicitly to the sensory properties of the resulting products.

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Unveiling the fungal diversity of Falanghina grapes and the role of autochthonous Saccharomyces and non-Saccharomyces yeasts in wine fermentation

Falanghina, a typical wine from the Sannio (Campania region, Italy), hosts a complex fungal microbiota that significantly influences both fermentation dynamics and sensory characteristics.