Macrowine 2021
IVES 9 IVES Conference Series 9 Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

Abstract

AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location. The aim of this study was to compare the quality of Merlot wines produced from grapes growing on skeletal and dry soils of terraced vineyards and deep loamy soils of alluvial plains of Vipava Valley, a warm climate winegrowing district in Slovenia.

METHODS: Five vineyards on terraces and five on alluvium plains were chosen. Viticulture parameters such as number of buds, number of clusters and leaf area on each vine were unified in 2019 and 2020 as described in Sivilotti et al. (2020). Stem water potential (SWP) was measured during the season (Deloire and Heyns, 2011). 5 kg of grapes were sampled in triplicates at the time of grape maturity. Basic physicochemical parameters of grapes were determined before microvinification. Microvinifications were analysed after alcoholic and malolactic fermentation. Concentration of total phenols (TP), total anthocyanins (TA), high (HMWP) and low molecular weight (LMWP) proanthocyanidins (PAS) were determined spectrophotometrically as described in Rigo et al. (2000). Moreover, structural characteristics of PAs in wines, i.e. mean degree of polymerisation (mDP), percentage of galloylaton (%G) and percentage of prodelphinidins (%P) were determined by UHPLC-DAD-MS/MS as described in Lisjak et al. (2019) and in Sivilotti et al. (2020). Esters were analysed by GC-MS (Bavčar and Baša Česnik, 2011) and higher alcohols by GC-FID (Bavčar et al., 2011).

RESULTS: SWP was more negative on terraces. According to basic physico chemical parameters and darker seed colour, grapes from terraces showed advanced ripening in comparison to grapes grown in alluvial plains. Wines from terraces had higher concentrations of TA, TP, HMWP, ash and total dry extract in comparison to wines from alluvial plains and PAs reported higher %G. Furthermore, aromatic profiles of wines were also different. In general, higher concentrations of higher alcohols and lower concentrations of esters were detected in wines from terraces.

CONCLUSIONS:

 The Merlot wines from grapes sampled in terraced vineyards differed in chemical composition from those from alluvial plains. In general, wines from terraces had higher polyphenol content, some quality parameters such as ash and total dry extract, structural differences of grape tannins and different profile of some aroma compounds

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alenka Mihelčič

Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia ,Andreja VANZO, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia Borut VRŠČAJ, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia Paolo SIVILOTTI, University of Udine, via delle Scienze 206, 33100 Udine, Italy Klemen LISJAK, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia

Contact the author

Keywords

terraces, alluvial plains, soil, stem water potential, wine quality, polyphenols, volatile compounds

Citation

Related articles…

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Evaluation of Valdadige DOC “Terra dei Forti” vineyards by zoning approach

La conoscenza dell’interazione genotipo x ambiente e pertanto della caratterizzazione territoriale è di prioritaria importanza nella valutazione dei siti. Grazie alla combinazione di dati GIS

The role of soil water holding capacity and plant water relations in zone/terroir expression

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit