Macrowine 2021
IVES 9 IVES Conference Series 9 Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

Quality of Merlot wines produced from terraced vineyards and vineyards on alluvial plains in Vipava valley, Slovenia (pdo)

Abstract

AIM: Different factors affect the style and quality of wine and one of the most important are environmental factors of vineyard location. The aim of this study was to compare the quality of Merlot wines produced from grapes growing on skeletal and dry soils of terraced vineyards and deep loamy soils of alluvial plains of Vipava Valley, a warm climate winegrowing district in Slovenia.

METHODS: Five vineyards on terraces and five on alluvium plains were chosen. Viticulture parameters such as number of buds, number of clusters and leaf area on each vine were unified in 2019 and 2020 as described in Sivilotti et al. (2020). Stem water potential (SWP) was measured during the season (Deloire and Heyns, 2011). 5 kg of grapes were sampled in triplicates at the time of grape maturity. Basic physicochemical parameters of grapes were determined before microvinification. Microvinifications were analysed after alcoholic and malolactic fermentation. Concentration of total phenols (TP), total anthocyanins (TA), high (HMWP) and low molecular weight (LMWP) proanthocyanidins (PAS) were determined spectrophotometrically as described in Rigo et al. (2000). Moreover, structural characteristics of PAs in wines, i.e. mean degree of polymerisation (mDP), percentage of galloylaton (%G) and percentage of prodelphinidins (%P) were determined by UHPLC-DAD-MS/MS as described in Lisjak et al. (2019) and in Sivilotti et al. (2020). Esters were analysed by GC-MS (Bavčar and Baša Česnik, 2011) and higher alcohols by GC-FID (Bavčar et al., 2011).

RESULTS: SWP was more negative on terraces. According to basic physico chemical parameters and darker seed colour, grapes from terraces showed advanced ripening in comparison to grapes grown in alluvial plains. Wines from terraces had higher concentrations of TA, TP, HMWP, ash and total dry extract in comparison to wines from alluvial plains and PAs reported higher %G. Furthermore, aromatic profiles of wines were also different. In general, higher concentrations of higher alcohols and lower concentrations of esters were detected in wines from terraces.

CONCLUSIONS:

 The Merlot wines from grapes sampled in terraced vineyards differed in chemical composition from those from alluvial plains. In general, wines from terraces had higher polyphenol content, some quality parameters such as ash and total dry extract, structural differences of grape tannins and different profile of some aroma compounds

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Alenka Mihelčič

Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia ,Andreja VANZO, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia Borut VRŠČAJ, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia Paolo SIVILOTTI, University of Udine, via delle Scienze 206, 33100 Udine, Italy Klemen LISJAK, Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia

Contact the author

Keywords

terraces, alluvial plains, soil, stem water potential, wine quality, polyphenols, volatile compounds

Citation

Related articles…

Phenolic characterization of four different red varieties with “Caíño” denomination cultivated in Northwestern Spain

In this work, these four red varieties were characterized in terms of phenolic composition. Thus, the anthocyanin accumulation and the extractability evolution during ripening were compared.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

Caratterizzazione delle produzioni vitivinicole dell’area del Barolo: Un’esperienza pluridisciplinare triennale (4)

Il Nebbiolo, uno dei vitigni più rappresentativi della viticoltura piemontese. é caratterizzato da una maturazione tardiva, una elevata vigoria e una bassa fertilità basale. La sua popolazione inoltre presenta una tale variabilità morfologica che é consuetudine suddividere il vitigno in diverse sottovarietà (Lampia, Rosé, Michet, Balla per citare solo quelle dell’areale albese) ognuna con presunte distinte caratteristiche morfologiche e produttive.

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality.