Macrowine 2021
IVES 9 IVES Conference Series 9 Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

Abstract

The main objective of this work is to study and model the impact of the polyphenolic profile on the stability and quality of wine aroma during oxidative aging. Aromas considered in the study are grape-derived varietal aromas, such as linalool, geraniol and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), yeast-released varietal mercaptans, such as 4-mercapto-4-methyl-2-pentanone (4MMP), 3-mercaptohexyl acetate (MHA) and 3-mercaptohexan-1-ol (3MH)) and also oxidation-related aroma compounds, such as acetaldehyde and Strecker aldehydes: isobutyraldehyde, 2-methylbutyraldehyde, isovaleraldehyde, methional and phenylacetaldehyde. Fifteen aromatic phenolic fractions (FFAs) were extracted from garnacha, moristel and tempranillo grapes; FFAs were chemically characterized and were further reconstituted with water, alcohol, metal cations, amino acids and polyfunctional mercaptans so that differences were limited to the polyphenolic profile and to levels of precursors to varietal aroma compounds. Reconstituted samples were supplied with oxygen (50 mg/L) and aged during 35 days at 35ºC. Results show that the accumulation of acetaldehyde is uniform and very low in all the FFAs, confirming previous results about the low accumulation of this compound during oxidation. Nevertheless, acetaldehyde accumulation seems to be correlated with the sum of phenolic acids. Accumulation of Strecker aldehydes between samples differs by a 2.5 factor, with much higher levels in reconstitutions with FFAs from Garnacha and Moristel varieties. Levels of Strecker aldehydes were positively correlated to the sum of flavanols, phenolic acids and with the percentage of unpigmented tannins. Also, they appear to be negatively correlated with color, pigmented and total tannin concentrations and delphinidins. Polyfunctional mercaptans reacted spontaneously even in anoxia, so that final levels were significant only in unoxidized controls. In these samples, levels between different FFAs differed by factors of up to 2.6 and were negatively correlated to the contents of unpigmented tannins. The other varietal aromas (linalool, geraniol and TDN), were not affected by oxidation. All of this demonstrates that the phenolic composition plays a crucial role in the development of Strecker aldehydes during oxidative aging, likely due the differential reactivity of the quinones formed. The strong reactivity of wine polyphenols to polyfunctional mercaptans was not expected and should be further studied.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Elena Bueno-Aventín

Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Chemistry. E-50009, Zaragoza, Spain,Vicente Ferreira-González, Ana Escudero-Carra   Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Chemistry. E-50009, Zaragoza, Spain

Contact the author

Keywords

polyphenol; acetaldehyde; aldehydes; polyfunctional mercaptans; oxidation

Citation

Related articles…

Understanding the genetic determinism of phenological and quality traits in ‘Corvina’ grape variety for selection of improved genotypes

Downy and powdery mildew are major issues in grapevine cultivation, requiring many phytosanitary treatments to ensure yield and quality. Climatic changes are also challenging grape cultivation

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.

Distribution analysis of myo and scyllo-inositol in natural grape must

s it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must.

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

Model ageing effects on the formation and evolution of minty terpenoids in red wine

A pool of terpenoids possibly implicated in minty odours and in the appreciable refreshing sensation, has been identified in the ageing bouquet of red Bordeaux wines

Macrowine 2021
IVES 9 IVES Conference Series 9 Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: September 14, 2021

Issue: (ex: Issue: Terclim 2023)

Type: typeofpublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

Citation

Related articles…

Cross analytical and sensory differentiation of monovarietal white wines from four autochthonous grape varieties: focus on macromolecules

White wines contain macromolecules such as proteins, phenolic compounds and polysaccharides. On a sensory
level, these compounds contribute to the ‘mouthfeel’ that differentiates the white wines worldwide [1].

Climate change impacts: a multi-stress issue

With the aim of producing premium wines, it is admitted that moderate environmental stresses may contribute to the accumulation of compounds of interest in grapes. However the ongoing climate change, with the appearance of more limiting conditions of production is a major concern for the wine industry economic. Will it be possible to maintain the vineyards in place, to preserve the current grape varieties and how should we anticipate the adaptation measures to ensure the sustainability of vineyards? In this context, the question of the responses and adaptation of grapevine to abiotic stresses becomes a major scientific issue to tackle. An abiotic stress can be defined as the effect of a specific factor of the physico-chemical environment of the plants (temperature, availability of water and minerals, light, etc.) which reduces growth, and for a crop such as the vine, the yield, the composition of the fruits and the sustainability of the plants. Water stress is in many minds, but a systemic vision is essential for at least two reasons. The first reason is that in natural environments, a single factor is rarely limiting, and plants have to deal with a combination of constraints, as for example heat and drought, both in time and at a given time. The second reason is that plants, including grapevine, have central mechanisms of stress responses, as redox regulatory pathways, that play an important role in adaptation and survival. Here we will review the most recent studies dealing with this issue to provide a better understanding of the grapevine responses to a combination of environmental constraints and of the underlying regulatory pathways, which may be very helpful to design more adapted solutions to cope with climate change.

Illuminating vineyard management: Elevating operational efficiency through advanced sensing and data analytics

In this video recording of the IVES science meeting 2024, Luca Brillante (California State University, Fresno, USA) speaks about vineyard management, advanced sensing and data analytics. This presentation is based on an original article accessible for free on OENO One.

USDA national grapevine germplasm resources: new curators, new directions

The National Plant Germplasm System (NPGS) in the United States Department of Agriculture safeguards numerous species. Grapevines are split in two locations: Davis, CA and Geneva, NY. The two germplasms maintain 43 Vitis species with over 4500 genetically unique accessions.

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.