Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of closures on aroma of godello and torrontés white wines post-bottling

Impact of closures on aroma of godello and torrontés white wines post-bottling

Abstract

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content. During storage, volatile compounds change as a result of the occurrence of numerous reactions. These chemical and physical processes are influenced by the type and quality of the closures, storage conditions (temperature, light exposure or relative humidity), packaging, etc. [1]. Traditional winemaking mostly uses cork closure, but new natural or synthetic closures have been reported as solution to eliminate some disadvantages of natural corks and can be suppose an alternative stoppers for the wine industry [2]. Several studies have evaluated the impact of different closures on the aroma of some white wine varieties, such as Chardonnay [3], Semillon [4], Sauvignon blanc [5], Verdejo [6], etc. This study aimed to show that the evolution of wine aroma attributes of two white varieties stopped with different closures after two years of bottle storage. Unwooded Godello and Torrontés wines from 2013 vintage were sourced from the same winery. In 2014-may, industrial wines were fractioned in 750 mL transparent glass bottles and closed with three different closures: Natural cork, micro-agglomerated cork and synthetic stopper. Bottled wines were stored in darkness at low temperature (10-15 °C) during 2 years. Sampling was performed at 12, 18, 24 and 30 months after vintage. Wine samples were extracted, in triplicate, with dichloromethane and the organic phase was dried over anhydrous sodium sulphate prior to analysis by gas chromatography with flame ionization detection (GC-FID) or coupled with mass spectrometry (GC-MS) [7]. Compounds identification was based on the comparison with authentic reference standards. Fifteen days after chemical analysis, wines were evaluated by sensory descriptive analysis with 7-10 trained judges. Sensory odorant attributes (floral, fruity, grass, spicy, woody, sulfurous and caramel) were punctuated on an 0-10 scale. Mouthfeel sensations and odorant descriptors were also evaluated globally, as well the global punctuation for the wine overall quality.Wines from the two varieties showed different aromatic profiles, but their evolution during bottle-storage were similar. As expected, the chemical evolution was characterised by decreases of the acetates and ethyl esters contents, and increases of other volatile compounds such as diethyl succinate or volatile phenols [7]. Changes in sensory evaluation were also took place, altering the sensory profile of both wines, changing from fruity and floral notes (higher in November-2015, third sampling) to toasty and spicy nuances. The preference of type of closure was different according to the storage-time. For this reason, the choice of closure type is crucial to preserve the wine aroma quality and to predict their shelf life.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Elena Falqué

Depto. Química Analítica y Alimentaria, Universidade de Vigo, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain,Kelly Bello-Novo1, Iván Vázquez-Pateiro1, José Manuel Mirás-Avalos2  1 Depto. Química Analítica y Alimentaria, Universidade de Vigo, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain  2 Unidad de Suelos y Riegos (Asociada a EEAD-CSIC), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain.

Contact the author

Keywords

bottle storage, closure, white wine, aroma

Citation

Related articles…

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

Know thy enemy: oxygen or storage temperature?

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

Armenia: historical origin of domesticated grapevine

The Armenian highlands are located on the northern border of western asia and stretch up to the caucasus from the north. Throughout human history, country has played an important role in connecting the civilizations of europe and the near east. The recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the pleistocene, ending 11.5 thousand years ago. Findings of this study confirmed that glacial episodes distinguish wild grapes into eastern and western ecotypes around 200-400 ka.

Mannoproteins from oenological by-products as tartaric stabilization and color agents in white and red wines

Climate change is drastically modifying grape composition and wine quality. As consequence, must and wines are becoming unbalanced, with high sugar concentration, increased alcohol content, lower acidity, excessive astringency, color instability and also a rise in the incidence of tartaric instability is being showed.