Macrowine 2021
IVES 9 IVES Conference Series 9 The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Abstract

AIMS: Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition, it is important to know the oxidative history of the wine. Acetaldehyde, the main wine oxidation product, is a powerful electrophile that reacts with numerous wine compounds giving desired products as the stable red polymeric pigments and the less astringent tannins but, also negative off-flavours. Although all these reactions are well known, the border between those increasing wine longevity and those decrementing wine quality is difficult to determine. This study has the aim to investigate the kinetics of consumption of acetaldehyde in red wines to give information useful for the further management of sulphur dioxide.

METHODS: Free-SO2 red wines were spiked with increasing levels of acetaldehyde (from 0 to 190 mg/L) and analysed over time. Chromatic properties and main phenolic classes were analysed by conventional spectrophotometric methods. Small phenolics, polymeric pigments (PP) and polymeric tannins (PT) were detected by HPLC, MS and NMR analysis.  Reactivity of tannins towards BSA and saliva was also determined (1-2-3).

RESULTS: Already two hours after the addition of acetaldehyde the 50% was consumed in reactions with phenolic compounds and the consumption increased over time. Also when a great excess of aldehyde was added (190 mg/L) and after one year of aging a loss of 75% of the initial value was detected. The first compounds that were consumed in reactions with acetaldehyde were anthocyanins and flavanols and a contemporary increase of polymeric pigments and tannins occurred. BSA and saliva reactive tannins increased over time when high concentration of acetaldehyde were added.

CONCLUSIONS

For a correct management of sulphur dioxide when bottling a free-SO2 red wine the content of acetaldehyde and phenolic strong reactants (anthocyanins and flavanols) should be determined to limit or favour further acetaldehyde reactions

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Francesca Coppola

Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, (Italy),Luigi Picariello, Martino Forino,  Luigi Moio, Angelita Gambuti Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, (Italy)

Contact the author

Keywords

wine longevity, polyphenols

Citation

Related articles…

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Impact of Metschnikowia pulcherrima and Saccharomyces cerevisiae in mixed fermentation on volatile compounds and energy sustainability in Lugana wine

In recent years, heightened awareness of the environmental impact has led to sustainability as a key issue for the winemaking sector.

Field evaluation of biofungicides to control powdery mildew and botrytis bunch rot of wine grapes in California

Grapevine powdery mildew caused by Erysiphe necator and Botrytis bunch rot caused by Botrytis cinerea are two of the most important fungal diseases in California grape production.

Impact des systèmes de conduite, de la gestion des sols et de la capacité de rétention d’eau des sols sur l’état hydrique de la vigne à Cognac

Dans le cadre de TerclimPro 2025, Sébastien Zito a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/9161