Macrowine 2021
IVES 9 IVES Conference Series 9 The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Abstract

AIMS: Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition, it is important to know the oxidative history of the wine. Acetaldehyde, the main wine oxidation product, is a powerful electrophile that reacts with numerous wine compounds giving desired products as the stable red polymeric pigments and the less astringent tannins but, also negative off-flavours. Although all these reactions are well known, the border between those increasing wine longevity and those decrementing wine quality is difficult to determine. This study has the aim to investigate the kinetics of consumption of acetaldehyde in red wines to give information useful for the further management of sulphur dioxide.

METHODS: Free-SO2 red wines were spiked with increasing levels of acetaldehyde (from 0 to 190 mg/L) and analysed over time. Chromatic properties and main phenolic classes were analysed by conventional spectrophotometric methods. Small phenolics, polymeric pigments (PP) and polymeric tannins (PT) were detected by HPLC, MS and NMR analysis.  Reactivity of tannins towards BSA and saliva was also determined (1-2-3).

RESULTS: Already two hours after the addition of acetaldehyde the 50% was consumed in reactions with phenolic compounds and the consumption increased over time. Also when a great excess of aldehyde was added (190 mg/L) and after one year of aging a loss of 75% of the initial value was detected. The first compounds that were consumed in reactions with acetaldehyde were anthocyanins and flavanols and a contemporary increase of polymeric pigments and tannins occurred. BSA and saliva reactive tannins increased over time when high concentration of acetaldehyde were added.

CONCLUSIONS

For a correct management of sulphur dioxide when bottling a free-SO2 red wine the content of acetaldehyde and phenolic strong reactants (anthocyanins and flavanols) should be determined to limit or favour further acetaldehyde reactions

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Francesca Coppola

Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, (Italy),Luigi Picariello, Martino Forino,  Luigi Moio, Angelita Gambuti Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Avellino, (Italy)

Contact the author

Keywords

wine longevity, polyphenols

Citation

Related articles…

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

1H-NMR-based Untargeted Metabolomics to assess the impact of soil type on the chemical composition of Mediterranean red wines

Untargeted metabolomics has proven to be an effective method to study the impact of the terroir on metabolic profile of wines. In this context, the aim of this study was to evaluate the effects of different soil types on the chemical composition of Mediterranean red wines, through 1H-NMR metabolomics combined with chemometrics.Grapes from Nero d’Avola L. red cultivar cultivated on four different soil types were separately vinified to obtain four different red wines.One milliliter of raw wine was analyzed by means of a Bruker Avance II 400 spectrometer operating at 400.15 MHz

The impact of vine pruning methods on physiological development and health condition of Vitis vinifera

This project aims on monitoring the plant development and comparison of the effects of various training systems on vine fertility and physiological processes.