Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

Abstract

During recent years, carbonic maceration (CM) wines are increasingly demanded by consumers. The Spanish Rioja Qualified Designation of Origin (D.O.Ca. Rioja) is a winemaking area in which this traditional vinification system is fairly widespread. Traditionally, it has been thought that CM wines are very different to those produced by destemming and crushing (DC), being described as light red wines with low tannins and less colour intensity, which have a shorter life and should be consumed early. The aim of the study was to determine the differences in the phenolic composition between two winemaking methods: carbonic maceration and the standard method of destemming and crushing. We analysed 84 commercial Rioja wines made from the Tempranillo grape variety during the 2017 vintage, 40 had been made by carbonic maceration and 44 by destemming and crushing. Despite the heterogeneity within the two groups of wines, it was possible to differentiate between them. Wines made by carbonic maceration presented a greater colour intensity due to a higher phenolic content and higher rates of ionization and polymerization. In addition, it was observed that the antioxidant activity, the content in coumaroyl derivatives of anthocyanins and the vitisins A and B were considerably greater in wines made by carbonic maceration.

This study has been co-financed (50/50) by the European Regional Development Fund (FEDER) and the Government of La Rioja, and from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lucía González-Arenzana

ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.,R. Escribano-Viana J. Portu P. Garijo R. López P. Santamaría A.R. Gutiérrez ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.

Contact the author

Keywords

carbonic maceration; tempranillo; colour

Citation

Related articles…

Rootstock effects on Grüner Veltliner ecophysiology in the Kremstal wine region of Austria

Understanding the impact of rootstocks on grapevine water relations is crucial to face climate change maintaining vineyard productivity and sustainability.

MicrobiomeSupport: Towards coordinated microbiome R&I activities in the food system to support (EU and) international bioeconomy goals

Microbiomes have crucial roles in maintaining life on Earth, and their functions drive human, animal, plant and environmental health. The microbiome research landscape is developing rapidly and is performed in many different science fields using similar concepts but mostly one (eco)system at-a-time. Thus, we are only starting to unravel and understand the interconnectedness of microbiomes across the (eco)systems.

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

Study of the interactions between wine anthocyanins and proline rich proteins

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.