Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

Abstract

During recent years, carbonic maceration (CM) wines are increasingly demanded by consumers. The Spanish Rioja Qualified Designation of Origin (D.O.Ca. Rioja) is a winemaking area in which this traditional vinification system is fairly widespread. Traditionally, it has been thought that CM wines are very different to those produced by destemming and crushing (DC), being described as light red wines with low tannins and less colour intensity, which have a shorter life and should be consumed early. The aim of the study was to determine the differences in the phenolic composition between two winemaking methods: carbonic maceration and the standard method of destemming and crushing. We analysed 84 commercial Rioja wines made from the Tempranillo grape variety during the 2017 vintage, 40 had been made by carbonic maceration and 44 by destemming and crushing. Despite the heterogeneity within the two groups of wines, it was possible to differentiate between them. Wines made by carbonic maceration presented a greater colour intensity due to a higher phenolic content and higher rates of ionization and polymerization. In addition, it was observed that the antioxidant activity, the content in coumaroyl derivatives of anthocyanins and the vitisins A and B were considerably greater in wines made by carbonic maceration.

This study has been co-financed (50/50) by the European Regional Development Fund (FEDER) and the Government of La Rioja, and from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lucía González-Arenzana

ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.,R. Escribano-Viana J. Portu P. Garijo R. López P. Santamaría A.R. Gutiérrez ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.

Contact the author

Keywords

carbonic maceration; tempranillo; colour

Citation

Related articles…

La hiérarchisation des Coteaux du Languedoc: une application concrète du zonage vitivinicole

L’A.O.C. Coteaux du Languedoc est située dans le Sud de la France, dans la partie Ouest de la bordure méditerranéenne. Elle forme un vaste amphithéâtre largement ouvert sur la mer méditerranée. L’Appellation a été constituée en 1960 par le regroupement de 14 anciennes petites appellations d’origine représentant 55 communes éparpillées dans les départements de l’Aude, de l’Hérault et du Gard. Par la suite, plusieurs extensions successives ont conduit à un ensemble actuellement composé de 168 communes.

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.

Genetic traceability of ‘Nebbiolo’ musts and wines by single nucleotide polymorphism (SNP) genotyping assays

AIM: ‘Nebbiolo’ (Vitis vinifera L.) is one of the most ancient and prestigious Italian grape cultivars. It is renowned for its use in producing monovarietal high-quality red wines, such Barolo and Barbaresco. Wine quality and value can be heavily modified if cultivars other than those allowed are employed.

Phenological stage dependency of Cabernet Sauvignon and Grenache response to water and nutrient limitation 

As the frequency and intensity of drought events increase, understanding the mechanisms of plant resilience to water deficit is crucial. To maintain an appropriate plant yield, a common practice is the application of high amounts of fertilizers with negative environmental impacts. The single and combined effect of water deficit and nutrient availability, namely nitrogen (N) and potassium (K), in Vitis Vinifera L. cv. Cabernet Sauvignon and Grenache was evaluated. Two-year-old grapevine plants grafted on SO4 rootstock were transferred in pots under semi-environmental conditions. During the growing season, plants were either maintained well-watered (100% ETc) or subjected to a controlled water deficit irrigation (33% ETc).

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2).