Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

Influence of the carbonic maceration winemaking method on the colour features of Tempranillo red wines

Abstract

During recent years, carbonic maceration (CM) wines are increasingly demanded by consumers. The Spanish Rioja Qualified Designation of Origin (D.O.Ca. Rioja) is a winemaking area in which this traditional vinification system is fairly widespread. Traditionally, it has been thought that CM wines are very different to those produced by destemming and crushing (DC), being described as light red wines with low tannins and less colour intensity, which have a shorter life and should be consumed early. The aim of the study was to determine the differences in the phenolic composition between two winemaking methods: carbonic maceration and the standard method of destemming and crushing. We analysed 84 commercial Rioja wines made from the Tempranillo grape variety during the 2017 vintage, 40 had been made by carbonic maceration and 44 by destemming and crushing. Despite the heterogeneity within the two groups of wines, it was possible to differentiate between them. Wines made by carbonic maceration presented a greater colour intensity due to a higher phenolic content and higher rates of ionization and polymerization. In addition, it was observed that the antioxidant activity, the content in coumaroyl derivatives of anthocyanins and the vitisins A and B were considerably greater in wines made by carbonic maceration.

This study has been co-financed (50/50) by the European Regional Development Fund (FEDER) and the Government of La Rioja, and from the Project RTI2018-096051-R-C31/C33 (MCIU/AEI/FEDER; UE).

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Lucía González-Arenzana

ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.,R. Escribano-Viana J. Portu P. Garijo R. López P. Santamaría A.R. Gutiérrez ICVV, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC). Finca La Grajera, Ctra. LO-20- salida 13, 26071 Logroño, Spain.

Contact the author

Keywords

carbonic maceration; tempranillo; colour

Citation

Related articles…

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

A viticultural perspective of Meso-scale atmospheric modelling in the Stellenbosch wine growing area, South Africa

La brise de mer et les facteurs climatiques qu’elle entraîne (accélération de la vitesse du vent au cours de l’après midi, augmentation de l’humidité et baisse de la temperature) sont d’un intérêt particulier pour la viticulture.

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.