Quantification of γ-nonalactone in botrytized and non-botrytized New Zealand and Australian wines

Abstract

ƴ-Nonalactonehas been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.1 The exact route ofƴ-nonalactone biosynthesis in wine has not been fully elucidated; however, precursors including linoleic acid, 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE) and 9-hydroxyoctadeca-10,12-dienoic acid (9-HODE) have been identified in incubation experiments.2 Wines produced from grapes infected with “noble rot” caused by Botrytis cinerea fungus generally show higher concentrations ofƴ-nonalactone compared to non-botrytized white wines, but the relative contribution of potential formation pathways has not been elucidated.3

To assess the effect of linoleic acid on the production of g-nonalactone in wine, fermentations with and without added linoleic acid were carried out in synthetic grape must (SGM) at 28 °C using commercial Saccharomyces cerevisiae EC1118. Prior toƴ-nonalactone quantitation in the finished wines and in a subset of six Australian and New Zealand commercial wines, several routes for the synthesis of a deuterated analogue ofƴ-nonalactone were attempted, before the deuterated d6-analogue ofƴ-nonalactone from its non-deuterated analogue was produced successfully. Subsequently, attempts were made to utilise the d6-ƴ-nonalactone analogue as an internal standard for the measurement of g-nonalactone using gas chromatography-mass spectrometry. However, the synthetic d6-ƴ-nonalactone analogue proved to be an inappropriate internal standard for this purpose, due to back-exchange of deuterium atoms in wine. 2-Octanol was instead utilised as a surrogate internal standard for the measurement ofƴ-nonalactone.ƴ-Nonalactone was successfully identified (above the limit of detection, 4.12 g L-1) in two commercial New Zealand botrytized wine samples, and one fermentation sample to which linoleic acid (132 mgL-1) had been added. This suggests a possible link between the effect of Botrytis cinerea and/or linoleic acid, and increased levels ofƴ-nonalactone in wine. Further research is needed in this area to determine the mechanism ofƴ-nonalactone biosynthesis and to more accurately quantifyƴ-nonalactone in wine, using a more effective internal standard.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Gillean Miller

School of Chemical Sciences, University of Auckland,Lisa PILKINGTON, School of Chemical Sciences, University of Auckland Bruno FEDRIZZI, School of Chemical Sciences, University of Auckland David BARKER, School of Chemical Sciences, University of Auckland Rebecca DEED, School of Chemical Sciences and School of Biological Sciences, University of Auckland

Contact the author

Keywords

 botrytized wines, botrytis cinerea, gc-ms, lactones

Citation

Related articles…

«Promitheus» the new greek red wine grape arromatic variety

This paper presents is the create, the study and amplographic description the newGreek aromatic variety of red wine grapes “Promitheus”, created in 2012

Untargeted metabolomics to identify potential chemical markers responsible for the permissiveness of red wines against Brettanomyces bruxellensis

Red wines constitute the majority of the wines produced in Bordeaux. All along the winemaking process, many microorganisms may develop in wine. A lot of them are useful but a common defect found in wine is linked to the development of Brettanomyces bruxellensis, a yeast that produces volatile phenols. These molecules are responsible for an unwanted sensorial defect described as similar to “horse sweat”, “burnt plastic” or “leather”. It has been shown that while some wines are very permissive and easily contaminated, others are pretty resistant to Brettanomyces development. However, common parameters such as pH, alcohol or sugars composition cannot fully explain the differences observed in wine permissiveness.

Identification of cis-2-methyl-4-propyl-1,3-oxathiane as a new volatile sulfur compound (VSC) in wine

Despite their trace concentrations, volatile sulfur compounds (VSCs) are an important category of flavour-active compounds that significantly contribute to desirable or undesirable aromas of many foods and beverages. In wines, VSCs in the form of polyfunctional thiols, notably 3-sulfanylhexan-1-ol (3-SH), 3-sulfanylhexyl acetate (3-SHA), and 4-sulfanyl-4-methyl-pentan-2-one (4-MSP), possess extremely low olfactory thresholds (≈ ng/L) and pleasant “tropical aroma” notes. They have received much attention with respect to their sensory contributions, quantitative occurrences, biogenesis, and thiol management through viticulture and winemaking. However, the fate of these potent volatiles are still not fully understood.

Impact of elemental sulfur (S0) residues in Sauvignon blanc juice on the formation of the varietal thiols 3-mercapto hexanol and 3-mercaptohexyl acetate

Elemental sulfur is a fungicide used by grape growers to control the development of powdery mildew, caused by the fungus Erysiphe necator. This compound is effective, cheap and has a low toxicity with no withholding period recommended. However, high levels of S0 residues in the harvested grapes can lead to the formation of reductive sulfur compounds that can impart taints and faults to the wine. Hydrogen sulphide (H2S) is a very volatile and unpleasant sulfur compound which formation is connected to high residues of S0 in juice (10 – 100 mg/L).

Wine odors: chemicals, physicochemical and perceptive processes involved in their perception

The odors of wines are diverse, complex and dynamic and much research has been devoted to the understanding of their chemical bases. However, while the “basic” chemical part of the problem, namely the identity of the chemicals responsible for the different odor nuances, was satisfactorily solved years ago, there are some relevant questions precluding a clear understanding. These questions are related to the physicochemical interactions determining the effective volatilities of the odorants and, particularly, to the perceptual interactions between different odor molecules affecting in different ways to the final sensory outputs.