Lead levels in fortified wines

Abstract

AIM: The main lead exposure route is the intake of contaminated food, water, and alcoholic beverages, in particular wine. At the gastric level, Pb is transformed into a soluble compound which, when conveyed into the bloodstream, is the long-term cause of saturnism, intoxication with neurotoxic, nephrotoxic and hematopoietic effects, and with the neurological developmental delay of children. Pb is classified by the International Agency for Research on Cancer as a 2A class, possible carcinogenic to humans. In an opinion on possible health risks, CONTAM considered that cereals, vegetables, drinking water, and wine give a greater contribute to dietary exposure to Pb in Europe. Large quantities of wine, beer, and other alcoholic products drinking can increase daily Pb intake above the maximum permitted levels. The JECFA/WHO committee defined a Provisional Tolerable Weekly Intake (PTWI) for lead of 25 µg/kg body weight for all age groups. The presence of lead in grapes, wines and other alcoholic products has been reported for many years and is influenced by a series of factors that characterize wineries (country of origin, different climatic conditions, grape cultivars, soil composition, environmental industrial emissions of lead, historical and present, motor vehicle exhausts gases, metal-based fungicides and insecticides, fertilizers and winemaking processes, including cellar equipment). The aim of this work was to detect the Pb content in fortified wines from central Italy, in particular from Abruzzo.

METHODS: The analysis was performed in ICP-MS. The wine samples were diluted ten times with HNO3 (2%) and analyzed in triplicate. The external standard method and the calibration solutions prepared in 2% ethanol/2% HNO3 were used for the quantification of Pb. The data obtained was analyzed using the ICP-MS ChemStation.

RESULTS: The results of a study conducted on the trace elements presence, including Pb, in Italian fortified wines agree with the literature data relating to the Pb content, which is lower than the limit allowed by current legislation, with the exception of a sample relating to the “Vino cotto”, of artisanal production.

CONCLUSIONS:

These results can contribute to the formation of a database to protect the consumers health. The wines Pb content is established by the Commission regulation (EU) 2015/1005 of 25 June 2015 which defines the maximum admitted value at 0.15 mg/L. The International Organization of Vine and Wine (OIV) in 2020 reduced the limit to 0.10 mg/L for wines and 0.15 mg/L for fortified wines.

DOI:

Publication date: September 15, 2021

Issue: Macrowine 2021

Type: Article

Authors

Angelo Cichelli

Department of Medical, Oral and Biotechnological Sciences – DiSMOB. “G. D’Annunzio” University of Chieti-Pescara – Via dei Vestini, Chieti, Italy.,Laura CASORRI, Department of Technological Innovations and safety of plants, products and anthropic settlements (DIT) – National Institute for Insurance against Accidents at Work (INAIL). Rome, Italy.  Ada CONSALVO Center for Advances Studies and Technologies (CAST) University “G. d’Annunzio” of Chieti-Pescara, Italy.  Marco DI LUIGI, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene – National Institute for Insurance against Accidents at Work (INAIL) – Research Centre Monte Porzio Catone – Rome, Italy.  Massimo DI MARTINO, Ispettorato Centrale della tutela della Qualita’ e della Repressione Frodi dei prodotti agroalimentari (ICQRF). Pescara, Italy.  Barbara FICOCIELLO, Department of Technological Innovations and safety of plants, products and anthropic settlements (DIT) – National Institute for Insurance against Accidents at Work (INAIL). Rome, Italy.  Eva MASCIARELLI, Department of Technological Innovations and safety of plants, products and anthropic settlements (DIT) – National Institute for Insurance against Accidents at Work (INAIL). Rome, Italy.

Contact the author

Keywords

lead, fortified wine, maximum value, oiv

Citation

Related articles…

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

Is complex nutrition more advantageous than mineral nitrogen for the fermentative capacities of S. cerevisiae?

During alcoholic fermentation, nitrogen is an essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (yan) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species which may lead to economic losses. However, correcting this nitrogen deficiency is sometimes not enough to restore proper fermentation performance. This suggests the existence of other nutritional shortages.

Understanding graft union formation by using metabolomic and transcriptomic approaches during the first days after grafting in grapevine

Since the arrival of Phyloxera (Daktulosphaira vitifolia) in Europe at the end of the 19th century, grafting has become essential to cultivate Vitis vinifera. Today, grafting provides not only resistance to this aphid, but it used to adapt the cultivars according to the type of soil, environment, or grape production requirements by using a panel of rootstocks. As part of vineyard decline, it is often mentioned the importance of producing quality grafted grapevine to improve vineyard longevity, but, to our knowledge, no study has been able to demonstrate that grafting has a role in this context. However, some scion/rootstock combinations are considered as incompatible due to poor graft union formation and subsequently high plant mortality soon after grafting. In a context of climate change where the creation of new cultivars and rootstocks is at the centre of research, the ability of new cultivars to be grafted is therefore essential. The early identification of graft incompatibility could allow the selection of non-viable plants before planting and would have a beneficial impact on research and development in the nursery sector. For this reason, our studies have focused on the identification of metabolic and transcriptomic markers of poor grafting success during the first days/week after grafting; we have identified some correlations between some specialized metabolites, especially stilbenes, and grafting success, as well as an accumulation of some amino acids in the incompatible combination. The study of the metabolome and the transcriptome allowed us to understand and characterise the processes involved during graft union formation.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Effect of terroir and winemaking protocol on the chemical and sensory profiles of Pinot Blanc wine

Wine research in the past years has mainly been focused on laboratory scale due to the possibility of controlling winemaking variables. Conversely, studies on wine quality in relation to the winemaking variables at the winery scale may be able to better account for the actual challenges encountered during wine production. Winemaking problems are recently arising from progressive changes in environmental conditions in relation to the terroir. It is important to realize that each wine region may have specific winemaking protocols and that winemakers often base their decisions on subjective, emotional, and empirical opinions. Due to all the above-mentioned issues, taking the correct decision in winemaking to achieve the desired goals may become even more challenging.