Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Abstract

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] . Results confirmed the affinity of PVPP towards flavan-3-ols and anthocyanins, especially coumaroylated anthocyanins demonstrated earlier[4]. Chemometrics analysis of the color and composition data revealed a link between redness (a*) and lightness (L*) related to native anthocyanin and flavan-3-ol concentrations. However, no specific marker was associated to patatin fining, suggesting the involvement of other pigments in the yellow component (b*). Additional data was acquired on the same set of samples by untargeted metabolomics using Ultra High Performance Liquid Chromatography coupled to an High Resolution Mass Spectrometer (UHPLC-HR-MS). Our results corroborate those of targeted analysis, demonstrating particular affinity of PVPP for native anthocyanins and flavan-3-ol but also flavonols and stilbenes. Markers of each fining treatment were also identified. PVPP fining treatment revealed a sharp decrease in the rose wine color, especially on the redness (a*) component linked to losses of phenolic compounds such as native anthocyanin. Further investigations aiming at revealing markers of the yellow component (b*) from untargeted analysis data are under way.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cécile Leborgne

SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban,Ashley Carty, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Aurélie Chevalier, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Arnaud Verbaere, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Matthias Bougreau, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Claude Boulet, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Nicolas Sommerer, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier   Gilles Masson, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Roch Mouret, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Véronique Cheynier, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier

Contact the author

Keywords

rosé wine – color – polyphenols – metabolomics – targeted & untargeted analysis

Citation

Related articles…

Influence of agronomic practices in soil water content in mid-mountain vineyards

In the context of LIFE project MIDMACC (LIFE18 CCA/ES/001099), several pilots have been installed in vineyards in mid mountain areas of Catalonia (NE Spain) to test well stablished agronomic practices to increase the adaptation of Mediterranean mid mountain to climate change. Soil water content (SWC) at three different depths (15, 30 and 45cm) was measured in continuum from August 2020. One pilot (WC) included a well-established green cover (GC), a new GC (NC) and a conventional soil management (CM, tilling+herbicides). NC presented an intermediate state between WC and CM, responding similarly to CM in autumn but quickly reaching similar SWC to WC, then following the same evolution till next spring, with CM presenting lower values along autumn and winter. Then vegetation activation decreased SWC in all plots, (much slower in CM, lacking GC). Sensibility to spring rains is again intermediate for NC, which joins SWC evolution of CM by the end of spring till next autumn. It is expected that NC will resemble WC more and more as its GC develops. In the pilot combining vine training (VSP vs Gobelet) and hillside management (slope vs terrace), no clear pattern could be related with these conditions. However, both terraces seem to be more sensitive to spring rains. A third pilot included new vineyards (7 and 1 year old). In the new vineyard (N), higher canopy development, a spontaneous green cover and row straw resulted in a slower SWC dynamic, not so sensitive to rains but conserving more soil water in spring and most of summer, even with presumably a higher water extraction by vines. In the newest vineyard (VN) the deepest sensor is still sensitive to rain events all over the year and SWC is always highest at this depth, revealing small water capture by vines.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

La valorisation des Terroirs Viticoles par les Indications géographiques et les appellations d’origine

Le sujet proposé dans le thème “l’environnement juridique” est plus économique que juridique, et constitue une sorte de complément au sujet qui l’a précédé : analyse des marchés, stratégies commerciales et terroirs”.