Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Abstract

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] . Results confirmed the affinity of PVPP towards flavan-3-ols and anthocyanins, especially coumaroylated anthocyanins demonstrated earlier[4]. Chemometrics analysis of the color and composition data revealed a link between redness (a*) and lightness (L*) related to native anthocyanin and flavan-3-ol concentrations. However, no specific marker was associated to patatin fining, suggesting the involvement of other pigments in the yellow component (b*). Additional data was acquired on the same set of samples by untargeted metabolomics using Ultra High Performance Liquid Chromatography coupled to an High Resolution Mass Spectrometer (UHPLC-HR-MS). Our results corroborate those of targeted analysis, demonstrating particular affinity of PVPP for native anthocyanins and flavan-3-ol but also flavonols and stilbenes. Markers of each fining treatment were also identified. PVPP fining treatment revealed a sharp decrease in the rose wine color, especially on the redness (a*) component linked to losses of phenolic compounds such as native anthocyanin. Further investigations aiming at revealing markers of the yellow component (b*) from untargeted analysis data are under way.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cécile Leborgne

SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban,Ashley Carty, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Aurélie Chevalier, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Arnaud Verbaere, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Matthias Bougreau, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Claude Boulet, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Nicolas Sommerer, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier   Gilles Masson, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Roch Mouret, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Véronique Cheynier, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier

Contact the author

Keywords

rosé wine – color – polyphenols – metabolomics – targeted & untargeted analysis

Citation

Related articles…

Aroma chemical profiles characterization of wines produced with moristel grapes harvested at different time points

The wine aroma is constituted by hundred of volatile chemical compounds that depend on many viticultural and oenological factors.

Metabolomic discrimination of grapevine water status for Chardonnay and Pinot noir

Water status impact in viticulture has been widely explored, as it strongly affects grapevine physiology and grape chemical composition. It is considered as a key component of vitivinicultural terroir. Most of the studies concerning grapevine water status have focused on either physiological traits, or berry compounds, or traits involved in wine quality. Here, the response of grapevine to water availability during the ripening period is assessed through non-targeted metabolomics analysis of grape berries by ultra-high resolution mass spectrometry. The grapevine water status has been assessed during 2 consecutive years (2019 & 2020), through carbon isotope discrimination on juices from berries collected at maturity (21.5 brix approx.) for 2 Vitis vinifera cv. Pinot noir (PN) and Chardonnay (CH). A total of 220 grape juices were collected from 5 countries worldwide (Italy; Argentina; France; Germany; Portugal). Measured δ13C (‰) varied from -28.73 to -22.6 for PN, and from -28.79 to -21.67 for CH. These results also clearly revealed higher water stress for the 2020 vintage. The same grape juices have been analysed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and Liquid Chromatography coupled to Mass Spectrometry (LC-qTOF-MS), leading to the detection of up to 4500 CHONS containing elemental compositions, and thus likely tens of thousands of individual compounds, which include fatty acids, organic acids, peptides, phenolics, also with high levels of glycosylation. Multivariate statistical analysis revealed that up to 160 elemental compositions, covering the whole range of detected masses (100 –1000 m/z), were significantly correlated to the observed gradients of water status. Examples of chemical markers, which are representative of these complex fingerprints, include various derivatives of the known abscisic acid (ABA), such as phaesic acid or abscisic acid glucose ester, which are significantly correlated with higher water stress, regardless of the variety. Cultivar-specific behaviours could also be identified from these fingerprints. Our results provide an unprecedented representation of the metabolic diversity, which is involved in the water status regulation at the grape level, and which could contribute to a better knowledge of the grapevine mitigation strategy in a climate change context.

Terroir effects from the reflectance spectra of the canopy of vineyards in four viticultural regions

Knowledge of the reflectance spectrum of grape leaves is important to the identification of grape varieties in images of viticultural regions where several cultivars co-exist.

Impact of the ‘Pinot’-family on early ripening in cool climate viticulture varieties

‘Pinot Precoce Noir’ (PPN) is an early ripening clone of ‘Pinot Noir’ (PN). The phenological differentiation is visible by an about two weeks earlier onset of veraison. It was found that the early veraison locus Ver1 on chromosome 16, previously identified in ‘Calardis Musqué’, originated from PPN. A highly correlated SSR marker, namely GF16-Ver1, was developed and tested for its ability to molecularly differentiate between PPN and PN as well as its potential to trace individual descendants.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2