Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Abstract

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] . Results confirmed the affinity of PVPP towards flavan-3-ols and anthocyanins, especially coumaroylated anthocyanins demonstrated earlier[4]. Chemometrics analysis of the color and composition data revealed a link between redness (a*) and lightness (L*) related to native anthocyanin and flavan-3-ol concentrations. However, no specific marker was associated to patatin fining, suggesting the involvement of other pigments in the yellow component (b*). Additional data was acquired on the same set of samples by untargeted metabolomics using Ultra High Performance Liquid Chromatography coupled to an High Resolution Mass Spectrometer (UHPLC-HR-MS). Our results corroborate those of targeted analysis, demonstrating particular affinity of PVPP for native anthocyanins and flavan-3-ol but also flavonols and stilbenes. Markers of each fining treatment were also identified. PVPP fining treatment revealed a sharp decrease in the rose wine color, especially on the redness (a*) component linked to losses of phenolic compounds such as native anthocyanin. Further investigations aiming at revealing markers of the yellow component (b*) from untargeted analysis data are under way.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cécile Leborgne

SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban,Ashley Carty, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Aurélie Chevalier, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Arnaud Verbaere, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Matthias Bougreau, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Claude Boulet, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Nicolas Sommerer, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier   Gilles Masson, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Roch Mouret, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Véronique Cheynier, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier

Contact the author

Keywords

rosé wine – color – polyphenols – metabolomics – targeted & untargeted analysis

Citation

Related articles…

Study on the impact of clone on the varietal aroma of Xinomavro

It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Tracking innovations for glyphosate-free in sloppy or terraced vineyard

Context and purpose of the study. Reducing pesticide use such as glyphosate, is a key challenge to support sustainability of viticulture systems and resilience of vineyard.

Remote sensing applications in viticulture: recent advances and new opportunities

Remote sensing applications in viticulture have been a research theme now for nearly two decades, becoming a valuable tool for vineyard management. Metrics produced using remotely sensed images of vineyards have yielded relationships with grape quality and yield that can help optimise vineyard performance

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]