Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Abstract

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] . Results confirmed the affinity of PVPP towards flavan-3-ols and anthocyanins, especially coumaroylated anthocyanins demonstrated earlier[4]. Chemometrics analysis of the color and composition data revealed a link between redness (a*) and lightness (L*) related to native anthocyanin and flavan-3-ol concentrations. However, no specific marker was associated to patatin fining, suggesting the involvement of other pigments in the yellow component (b*). Additional data was acquired on the same set of samples by untargeted metabolomics using Ultra High Performance Liquid Chromatography coupled to an High Resolution Mass Spectrometer (UHPLC-HR-MS). Our results corroborate those of targeted analysis, demonstrating particular affinity of PVPP for native anthocyanins and flavan-3-ol but also flavonols and stilbenes. Markers of each fining treatment were also identified. PVPP fining treatment revealed a sharp decrease in the rose wine color, especially on the redness (a*) component linked to losses of phenolic compounds such as native anthocyanin. Further investigations aiming at revealing markers of the yellow component (b*) from untargeted analysis data are under way.

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Cécile Leborgne

SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban,Ashley Carty, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Aurélie Chevalier, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Arnaud Verbaere, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Matthias Bougreau, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Claude Boulet, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Nicolas Sommerer, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier   Gilles Masson, Institut Français de la Vigne et du Vin, Centre du Rosé, Vidauban  Jean-Roch Mouret, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier  Véronique Cheynier, SPO, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier

Contact the author

Keywords

rosé wine – color – polyphenols – metabolomics – targeted & untargeted analysis

Citation

Related articles…

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Preserving wine typicity in a climate change scenario: Examples from the Willamette Valley, Oregon

Aims: Wine typicity is defined as a reflection of varietal origins, cultures and traditions of the wine. These aspects are many times also extremely important when considering a wines quality. However, as climate change occurs the typicity of wines may also change. With the long history of winemaking it is possible to define a wines typicity and how it has changed as climate alters. 

Antioxidant activity of grape seed and skin extract during ripening

Reactive oxygen species (ROS) play an important physiological role in the body’s defense and being involved in numerous signaling pathways 1, 2. When the balance between oxidant and antioxidant species is altered in favor of ROS, oxidative stress is generated. In this condition the cells are damaged as the ROS oxidize important cellular components, such as proteins, lipids, nucleic acids and

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Étude des potentialités des terroirs viticoles: une démarche globale en zone A.O.C. L’exemple des Côtes du Rhône

Depuis près d’une quinzaine d’années, l’Appellation d’Origine Contrôlée (A.O.C.) Côtes du Rhône a engagé un vaste programme afin de mieux connaître et valoriser les potentialités des différents terroirs qui la composent.