Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Abstract

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer. For now, it was only analysed the results of the first 9 months. Grape-derived polyphenols remained steady in older wines (2008), while are still developing in younger wines. Vanillin and syringaldehyde contents increased in all samples, probably because wine aging is being developed in brand-new oak casks. Malvasia 2008 wines displayed the highest increase in L* and b*. The 2018 wines also revealed an increase in L* and b* values, but still lower than those of 2008. The room temperature and the thermal amplitude are always higher in location B while humidity is always higher in location Z.Up to 9 months of oak aging it is not noticeable substantial differences between wines polyphenolic profiles, however there are some indications that MWs placed in warmer wine cellars already show signs of greater browning.Vanda Pereira is thankful to ARDITI for her grant (M1420-09-5369-FSE-000001). FEDER financed this work, project IMPACT III (M1420-01-0247-FEDER-000020).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vanda, Pereira 

i3N, University of Aveiro, Portugal ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.,Maria João,CARVALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Gabriel, PINTO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Rita, FIALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. João Marcelo, GASPAR, Madeira Wine Company, S.A., Portugal. Marisela, PONTES, Madeira Wine Company, S.A., Portugal. Ana Cristina, PEREIRA, CIEPQPF, University of Coimbra, Portugal; ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Francisco, ALBUQUERQUE, Madeira Wine Company, S.A., Portugal. José Carlos, MARQUES, Faculty of Exact Sciences and Engineering & ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.

Contact the author

Keywords

fortified wines; wine maturation; wine oxidation; browning

Citation

Related articles…

A generic method to analyze vine water deficit continuously

In the context of global warming, water scarcity is becoming an increasing issue worldwide. However, the reference method to characterize vine water deficit is based on water potential measurement, which is a destructive and discontinuous method. The current climatic context emphasizes the need for more precise and more continuous vineyard water use measurements in order to optimize irrigation and vine water deficit monitoring.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.

Región Vitivinícola del Vale dos Vinhedos (Brasil): una metodología para la definición de límites geográficos y elaboración de cartas EN escala media

Los estudios regionales presentaron en Geografía, como en otras ciencias, en este siglo, varios enfoques. Cualquiera que sea la mirada sobre el espacio, en la base de la temática regional está la concepción

ASSESSMENT OF GRAPE QUALITY THROUGH THE MONITORING OFPHENOLIC RIPENESS AND THE APPLICATION OF A NEW RAPID METHOD BASED ON RAMAN SPECTROSCOPY

The chemical composition of grape berries at harvest is one of the key aspects influencing wine quality and depends mainly on the ripeness level of grapes. Climate change affects this trait, unbalancing technological and phenolic ripeness, and this further raises the need for a fast determination of the grape maturity in order to quickly and efficiently determine the optimal time for harvesting. To this end, the characterization of variety-specific ripening curves and the development of new and rapid methods for determining grape ripeness are of key importance.

Predicting provenance and grapevine cultivar implementing machine learning on vineyard soil microbiome data: implications in grapevine breeding

The plant rhizosphere microbial communities are an essential component of plant microbiota, which is crucial for sustaining the production of healthy crops. The main drivers of the composition of such communities are the growing environment and the planted genotype. Recent viticulture studies focus on understanding the effects of these factors on soil microbial composition since microbial biodiversity is an important determinant of plant phenotype, and of wine’s organoleptic properties. Microbial biodiversity of different wine regions, for instance, is an important determinant of wine terroir.