Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Abstract

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer. For now, it was only analysed the results of the first 9 months. Grape-derived polyphenols remained steady in older wines (2008), while are still developing in younger wines. Vanillin and syringaldehyde contents increased in all samples, probably because wine aging is being developed in brand-new oak casks. Malvasia 2008 wines displayed the highest increase in L* and b*. The 2018 wines also revealed an increase in L* and b* values, but still lower than those of 2008. The room temperature and the thermal amplitude are always higher in location B while humidity is always higher in location Z.Up to 9 months of oak aging it is not noticeable substantial differences between wines polyphenolic profiles, however there are some indications that MWs placed in warmer wine cellars already show signs of greater browning.Vanda Pereira is thankful to ARDITI for her grant (M1420-09-5369-FSE-000001). FEDER financed this work, project IMPACT III (M1420-01-0247-FEDER-000020).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vanda, Pereira 

i3N, University of Aveiro, Portugal ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.,Maria João,CARVALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Gabriel, PINTO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Rita, FIALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. João Marcelo, GASPAR, Madeira Wine Company, S.A., Portugal. Marisela, PONTES, Madeira Wine Company, S.A., Portugal. Ana Cristina, PEREIRA, CIEPQPF, University of Coimbra, Portugal; ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Francisco, ALBUQUERQUE, Madeira Wine Company, S.A., Portugal. José Carlos, MARQUES, Faculty of Exact Sciences and Engineering & ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.

Contact the author

Keywords

fortified wines; wine maturation; wine oxidation; browning

Citation

Related articles…

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Sensory differences of Pinot noir wines from willamette valley subregions

Wines from different regions or AVAs have been found to have sensory differences, as these areas are typically located quite far apart and have dramatically different climates, soils and other terroir factors.

La sémantique liée à la notion de terroir : une objectivité pluridisciplinaire

It is not easy at first sight to give an exhaustive definition of the notion of terroir as it can be simplified or complicated at will. Thus the vagueness that surrounds this concept leaves the door open to various interpretations of the terroir. These tend towards a questionable level of objectivity because the fields they explore are not sufficient to explain the notion on their own, constituting only part of a whole.

Creativini: an augmented reality card game to promote the learning of the reasoning process of a technical management route for making wine 

Nowadays, the entire viticultural and enological process is wisely thought out according to the style of wine to be produced and the local climatic conditions. Acquiring the approach of a technical management route specific for wine production remains a complex learning process for students. To enhance such learning, The Ecole d’Ingénieurs de PURPAN (PURPAN), an engineering school located in Toulouse southwest France, has recently developed Creativini, a collaborative card game in English made of 150 cards spread into 14 batches. Students in groups of 3 to 6 must design a technical production route, from plant material to bottling.

Delaying grapevine budbreak and/or phenological stages

In the current climatic context, with milder winters leading to earlier budburst in most wine regions, vines are exposed to the risk of spring frosts for a longer period. Depending on the year, frost can lead to yield losses of between 20 and 100 %, jeopardizing the economic survival of wine estates. In addition, by destroying young shoots, spring frosts can impact the following season’s production, by reducing the number of canes available for pruning, for example. Late pruning is one method to combat spring frosts.