Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Chemical diversity of 'special' wine styles: fortified wines, passito style, botrytized and ice wines, orange wines, sparkling wines 9 Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Abstract

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer. For now, it was only analysed the results of the first 9 months. Grape-derived polyphenols remained steady in older wines (2008), while are still developing in younger wines. Vanillin and syringaldehyde contents increased in all samples, probably because wine aging is being developed in brand-new oak casks. Malvasia 2008 wines displayed the highest increase in L* and b*. The 2018 wines also revealed an increase in L* and b* values, but still lower than those of 2008. The room temperature and the thermal amplitude are always higher in location B while humidity is always higher in location Z.Up to 9 months of oak aging it is not noticeable substantial differences between wines polyphenolic profiles, however there are some indications that MWs placed in warmer wine cellars already show signs of greater browning.Vanda Pereira is thankful to ARDITI for her grant (M1420-09-5369-FSE-000001). FEDER financed this work, project IMPACT III (M1420-01-0247-FEDER-000020).

DOI:

Publication date: September 16, 2021

Issue: Macrowine 2021

Type: Article

Authors

Vanda, Pereira 

i3N, University of Aveiro, Portugal ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.,Maria João,CARVALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Gabriel, PINTO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Rita, FIALHO, ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. João Marcelo, GASPAR, Madeira Wine Company, S.A., Portugal. Marisela, PONTES, Madeira Wine Company, S.A., Portugal. Ana Cristina, PEREIRA, CIEPQPF, University of Coimbra, Portugal; ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal. Francisco, ALBUQUERQUE, Madeira Wine Company, S.A., Portugal. José Carlos, MARQUES, Faculty of Exact Sciences and Engineering & ISOPlexis – Sustainable Agriculture and Food Technology Center, University of Madeira, Portugal.

Contact the author

Keywords

fortified wines; wine maturation; wine oxidation; browning

Citation

Related articles…

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.

Molecular binding mechanisms between grape seed polypeptides and wine anthocyanins by fluorescence spectroscopy and computational techniques

In recent years, proteins endogenous to grape have become of great interest to the wine industry because they represent a new alternative to other biopolymers subjected to more legal restrictions (i.e. animal origin and synthetics) that can be used in technological applications to modulate sensory attributes such as wine color and have a positive impact on wine quality.

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

UV-VIS-NIR spectroscopy as a tool for predicting volatile compounds in grape must

The wine sector is one of the most significant industries worldwide, with Spain being a leading country in wine production and export. A key factor in wine quality is its aroma, which is directly influenced by the volatile compounds present in the grape, with terpenes being among the most significant contributors.