Macrowine 2021
IVES 9 IVES Conference Series 9 Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Abstract

AIM: Methyl salicylate (MeSA) has been reported as a potentially impactful compound in Verdicchio wines produced in central Italy. Lugana is another white wine produced in the north-east of Italy from a grape locally known as Trebbiano di Soave, sharing a very similar genetic background with Verdicchio. The aims of this study were evaluating MeSA occurrence in Lugana, assessing its aroma impact on white wines aroma and elucidating its biogenesis during vinification.

METHODS: Fifteen Lugana wines were analysed for methyl salycilate content in comparison with Verdicchio, Pinot grigio and Garganega wines. MeSA impact on white wine aroma was studied by means of triangular test, adding MeSA at different concentrations. Possible routes of MeSA formation by yeast were investigated by means of a high throughput assay in which S. cerevisiae cells were put in contact with precursor such as salicylic acid (esterification) or glycosidic extracts (glycosidase). Sub-fractions of Lugana glycosidic extracts were also obtained by HPLC fractionation, allowing further evaluation of precursors role. MeSA formation was also followed during fermentation of Lugana must as well as during wine aging. All analyses of MeSA were carried out by SPME-GC-MS.

RESULTS: MeSA concentration in Lugana wines varied in the range 5-120 g/L, and was on average higher that in the other wines analysed. Sensory data showed that 20 µg/L of MeSA were sufficient to impact wine aroma, conferring floral and balsamic notes. Formation of MeSA was observed when yeast cells were in the presence of glycosidic extract, whereas esterification of salicylic acid was not confirmed. Release of MeSA from different HPLC fractions was observed, suggesting multiple possible precursors

CONCLUSIONS:

MeSA is present in Lugana wines at concentrations sufficiently high to impact wine aroma. MeSA odor in wine MeSA appears to be associated to floral attributes. MeSA formation is mostly due to yeast cleavage of grape glycosidic precursor

ACKNOWLEDGMENTS:

Biolaffort is acknowledged for financial support.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi, Carla INDORATO, Eduardo VELA, Filippo FORTE, Giovanni LUZZINI, Maurizio UGLIANO,

Department of Biotechnology, University of Verona, Italy, 

Contact the author

Keywords

methyl salicylate; lugana; biogenesis; volatile compounds

Citation

Related articles…

Innovative water status monitoring of white grape varieties with on-plant sensors

Context and Purpose. Climate change presents significant challenges to agricultural sustainability, particularly through the increasing frequency of drought and water scarcity.

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

Developmental stage-specific effects of high temperature on aroma accumulation in ‘Marselan’ grapes from the Helan Mountain region

The aroma of wine grapes is influenced by a complex metabolic network, with terroir factors, especially high temperatures, playing a critical role during berry development.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].