Macrowine 2021
IVES 9 IVES Conference Series 9 Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Abstract

AIM: Methyl salicylate (MeSA) has been reported as a potentially impactful compound in Verdicchio wines produced in central Italy. Lugana is another white wine produced in the north-east of Italy from a grape locally known as Trebbiano di Soave, sharing a very similar genetic background with Verdicchio. The aims of this study were evaluating MeSA occurrence in Lugana, assessing its aroma impact on white wines aroma and elucidating its biogenesis during vinification.

METHODS: Fifteen Lugana wines were analysed for methyl salycilate content in comparison with Verdicchio, Pinot grigio and Garganega wines. MeSA impact on white wine aroma was studied by means of triangular test, adding MeSA at different concentrations. Possible routes of MeSA formation by yeast were investigated by means of a high throughput assay in which S. cerevisiae cells were put in contact with precursor such as salicylic acid (esterification) or glycosidic extracts (glycosidase). Sub-fractions of Lugana glycosidic extracts were also obtained by HPLC fractionation, allowing further evaluation of precursors role. MeSA formation was also followed during fermentation of Lugana must as well as during wine aging. All analyses of MeSA were carried out by SPME-GC-MS.

RESULTS: MeSA concentration in Lugana wines varied in the range 5-120 g/L, and was on average higher that in the other wines analysed. Sensory data showed that 20 µg/L of MeSA were sufficient to impact wine aroma, conferring floral and balsamic notes. Formation of MeSA was observed when yeast cells were in the presence of glycosidic extract, whereas esterification of salicylic acid was not confirmed. Release of MeSA from different HPLC fractions was observed, suggesting multiple possible precursors

CONCLUSIONS:

MeSA is present in Lugana wines at concentrations sufficiently high to impact wine aroma. MeSA odor in wine MeSA appears to be associated to floral attributes. MeSA formation is mostly due to yeast cleavage of grape glycosidic precursor

ACKNOWLEDGMENTS:

Biolaffort is acknowledged for financial support.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi, Carla INDORATO, Eduardo VELA, Filippo FORTE, Giovanni LUZZINI, Maurizio UGLIANO,

Department of Biotechnology, University of Verona, Italy, 

Contact the author

Keywords

methyl salicylate; lugana; biogenesis; volatile compounds

Citation

Related articles…

Hanseniaspora uvarum and high hydrostatic pressure for improving wine aging on lees

Non-saccharomyces yeasts gained an increased interest in winemaking during the last decades, due to their ability to produce relevant amounts of polysaccharides. Moreover, a significant release of glutathione into the wine during fermentation was also observed with these strains, as well as an improvement of color stability and wine aroma profile. Valuable results have been obtained by hanseniaspora spp. concerning the release of polysaccharides and the production of acetic esters, mainly during fermentation.

Studying PIWIs in three dimensions: agronomic, economic and ecological evaluation of 14 fungus-tolerant cultivars in Luxembourg

Growing fungus-tolerant cultivars (PIWIs) reduces the need of fungicide use by 50-80 %. PIWIs have the potential to address climate change adaptation and mitigation simultaneously.

Oxidation vs reduction: the fate of tannins, pigments, vscs, color,SO2 and metabolomic fingerprint

The management of oxygen during winemaking and aging is a big issue in order to achieve high quality wines. The correct amount of O2 improves aroma, astringency, bitterness and color, however an excess of oxygen promotes the appearance of yellow

Effect of grape harvest time on the metabolomic profile of ribolla gialla monovarietal sparkling wines

The timing of grape harvest is crucial factor to be considered in the winemaking process, as delayed harvest increases the content of varietal aromas, esters, aldehydes

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.