Macrowine 2021
IVES 9 IVES Conference Series 9 Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Occurrence of methyl salicylate in lugana wines: aroma impact and biogenesis 

Abstract

AIM: Methyl salicylate (MeSA) has been reported as a potentially impactful compound in Verdicchio wines produced in central Italy. Lugana is another white wine produced in the north-east of Italy from a grape locally known as Trebbiano di Soave, sharing a very similar genetic background with Verdicchio. The aims of this study were evaluating MeSA occurrence in Lugana, assessing its aroma impact on white wines aroma and elucidating its biogenesis during vinification.

METHODS: Fifteen Lugana wines were analysed for methyl salycilate content in comparison with Verdicchio, Pinot grigio and Garganega wines. MeSA impact on white wine aroma was studied by means of triangular test, adding MeSA at different concentrations. Possible routes of MeSA formation by yeast were investigated by means of a high throughput assay in which S. cerevisiae cells were put in contact with precursor such as salicylic acid (esterification) or glycosidic extracts (glycosidase). Sub-fractions of Lugana glycosidic extracts were also obtained by HPLC fractionation, allowing further evaluation of precursors role. MeSA formation was also followed during fermentation of Lugana must as well as during wine aging. All analyses of MeSA were carried out by SPME-GC-MS.

RESULTS: MeSA concentration in Lugana wines varied in the range 5-120 g/L, and was on average higher that in the other wines analysed. Sensory data showed that 20 µg/L of MeSA were sufficient to impact wine aroma, conferring floral and balsamic notes. Formation of MeSA was observed when yeast cells were in the presence of glycosidic extract, whereas esterification of salicylic acid was not confirmed. Release of MeSA from different HPLC fractions was observed, suggesting multiple possible precursors

CONCLUSIONS:

MeSA is present in Lugana wines at concentrations sufficiently high to impact wine aroma. MeSA odor in wine MeSA appears to be associated to floral attributes. MeSA formation is mostly due to yeast cleavage of grape glycosidic precursor

ACKNOWLEDGMENTS:

Biolaffort is acknowledged for financial support.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Davide Slaghenaufi, Carla INDORATO, Eduardo VELA, Filippo FORTE, Giovanni LUZZINI, Maurizio UGLIANO,

Department of Biotechnology, University of Verona, Italy, 

Contact the author

Keywords

methyl salicylate; lugana; biogenesis; volatile compounds

Citation

Related articles…

Contribution to the sensory and volatile characterization of four traditional Galician red varieties

Galicia, a region sited in the northwest of Spain, is one of the most important wine production area, with five Appellations of Origin Controlled (AOC).

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.

Impact of grape ripening and post-harvest withering on must composition and fermentation kinetics

Postharvest dehydration is a widely employed technique in winemaking to enhance sugar concentration and secondary metabolites from grapes. Different grape varieties exhibit varying responses in terms of dehydration rate and the resulting chemical composition.

Characterization of Brettanomyces bruxellensis biofilm, a resistance strategy to persist in wine-related environments

AIM: Biofilm is a resistance mechanism deployed by microorganisms to adapt to stresses, leading to their persistence in the environment. In the case of Brettanomyces bruxellensis, a wine spoilage yeast, knowledge about its capacity to form biofilm remains limited although this potential strategy could explain its recurring presence in cellars.

Influence of the malolactic fermentation on wine metabolomics or drastic metabolomics changes due to malolactic fermentation

It is well known that lactic acid bacteria modify the wine volatile compound. However, very few data are available regarding metabolite changes that occurred during the malolactic fermentation (MLF).