Macrowine 2021
IVES 9 IVES Conference Series 9 Mouthfeel effects due to oligosaccharides within a wine matrix

Mouthfeel effects due to oligosaccharides within a wine matrix

Abstract

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine. Given the large variance in types and concentrations of oligosaccharides present within the wine system this study aimed to understand their effects with as little variables as possible. This study utilized two different types of oligosaccharides at two different concentration levels to identify and quantify differences in mouthfeel perception within a model wine system. The two oligosaccharides in question, Fructooligosaccharide (FOS) and Glactooligosaccharide (GOS), were added to a basic wine model (14% ethanol, 4 g/L tartaric acid, pH 3.5) at a rate of 450ppm and 900ppm. Concentrations that have been measured in wine, resulting in four treatment groups, FOS450, FOS900, GOS450, GOS900, and one control group consisting of untreated model wine. All four treatment groups underwent triangle testing against the untreated control, and one additional triangle test between the low and high concentrations of the respective oligosaccharide. After triangle tests, all four treatments, and the untreated control underwent descriptive analysis via 100mm visual analog scales. Panelists for the descriptive analysis panel underwent training on sweetness, bitterness, viscosity, acidity, and astringency prior to the beginning of the panel. The results of the triangle tests showed a significant different between the FOS450 and FOS900 samples. However, interestingly neither the FOS450 nor FOS900 samples were found to be significantly different from the untreated control sample. Additionally, neither of the GOS samples were found to be significant from either each other or the control sample. Descriptive analysis found no significant difference in any of the five attributes tested. This indicates that the difference between the FOS450 and FOS900 samples may be above a detection threshold but may not be above a perception threshold. This would mean that a difference can be noticed, but not quantified. Future work will investigate differing levels of oligosaccharides and implement more training to better differentiate during descriptive analysis.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Samuel Hoffman, Elizabeth Tomasino, Quynh Phan,

Graduate Research Assistant and MS Candidate, Oregon State University, Associate Professor, Oregon State University Graduate Research Assistant and PhD Candidate, Oregon State University

Contact the author

Keywords

mouthfeel, wine, oligosaccharides, descriptive analysis

Citation

Related articles…

Have the best Bordeaux wines been drunk already? A reflection on the transient nature of terroir, using case study Australia

Aim:  The aim of this paper is to demonstrate that the meaning of terroir should be regarded as transient. This is because climate, one of the principal components of terroir, is changing with time, and can no longer be assumed to be constant with fluctuations about a mean. This is due to the climate crisis.

ANALYZING THE ROLE OF ELEMENTAL SULFUR IN GRAPE JUICE ON THE DEVELOPMENT OF POLYFUNCTIONAL MERCAPTANS IN SAUVIGNON BLANC WINES

Sauvignon blanc is characterized by distinctive aromas, both fruity and herbaceous. The “green” character has been attributed to the methoxypyrazines, while the “fruity” character is associated with polyfunctional mercaptans . Polyfunctional mercaptans are of great significance due to their high impact on wines and associated low perception thresholds.
Elemental sulfur (S⁰) is widely used to protect grapevines from powdery mildew.

Can yeast cells sense other yeasts beyond competition interactions?

The utilization of non-Saccharomyces yeasts in the wine industry has increased significantly in recent years. Alternative species need commonly be employed in combination with Saccharomyces cerevisiae to avoid stuck fermentation, or microbial spoilage. The employment of more than one yeast starter can lead to interactions between different species with an impact on the outcome of wine fermentation. Previous studies[1] demonstrated that S. cerevisiae elicits transcriptional responses with both shared and species-specific features in co-culture with other yeast species.

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).