Macrowine 2021
IVES 9 IVES Conference Series 9 Mouthfeel effects due to oligosaccharides within a wine matrix

Mouthfeel effects due to oligosaccharides within a wine matrix

Abstract

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine. Given the large variance in types and concentrations of oligosaccharides present within the wine system this study aimed to understand their effects with as little variables as possible. This study utilized two different types of oligosaccharides at two different concentration levels to identify and quantify differences in mouthfeel perception within a model wine system. The two oligosaccharides in question, Fructooligosaccharide (FOS) and Glactooligosaccharide (GOS), were added to a basic wine model (14% ethanol, 4 g/L tartaric acid, pH 3.5) at a rate of 450ppm and 900ppm. Concentrations that have been measured in wine, resulting in four treatment groups, FOS450, FOS900, GOS450, GOS900, and one control group consisting of untreated model wine. All four treatment groups underwent triangle testing against the untreated control, and one additional triangle test between the low and high concentrations of the respective oligosaccharide. After triangle tests, all four treatments, and the untreated control underwent descriptive analysis via 100mm visual analog scales. Panelists for the descriptive analysis panel underwent training on sweetness, bitterness, viscosity, acidity, and astringency prior to the beginning of the panel. The results of the triangle tests showed a significant different between the FOS450 and FOS900 samples. However, interestingly neither the FOS450 nor FOS900 samples were found to be significantly different from the untreated control sample. Additionally, neither of the GOS samples were found to be significant from either each other or the control sample. Descriptive analysis found no significant difference in any of the five attributes tested. This indicates that the difference between the FOS450 and FOS900 samples may be above a detection threshold but may not be above a perception threshold. This would mean that a difference can be noticed, but not quantified. Future work will investigate differing levels of oligosaccharides and implement more training to better differentiate during descriptive analysis.

DOI:

Publication date: September 24, 2021

Issue: Macrowine 2021

Type: Article

Authors

Samuel Hoffman, Elizabeth Tomasino, Quynh Phan,

Graduate Research Assistant and MS Candidate, Oregon State University, Associate Professor, Oregon State University Graduate Research Assistant and PhD Candidate, Oregon State University

Contact the author

Keywords

mouthfeel, wine, oligosaccharides, descriptive analysis

Citation

Related articles…

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Use of fumaric acid on must or during alcoholic fermentation

Fumaric acid has been approved by the OIV in 2021 for its application on wine to control the growth and activity of lactic acid bacteria. Fumaric acid is currently being evaluated by the OIV as an acidifier of must and wine. Investigations during the 2023 vintage provided further information on its use on must or during AF, thus completing information provided during the previous vintage.

Talking about terroir

When talking about terroir, scientists and lay wine tasters, very much including wine journalists and wine growers, too often talk past one another.

TARTARIC STABILIZATION MAY AFFECT THE COLOR AND POLYPHENOLIC COMPOSITION OF TANNAT RED WINES FROM URUGUAY

Tartrate precipitation affects the properties of wines, due to the formation of crystals that cause turbidity, even after being bottled. The forced tartaric stabilization is carried out frequently for young wines, through various physicochemical procedures. The traditional treatment for tartaric stabilization is refrigeration, but it can have a negative effect on wine’s sensory properties, and particularly on the color of red wines. The aim of this study was to evaluate the effect of different tartaric stabilization options on the color and phenolic composition of Tannat red wines from Uruguay.

Considerations about the concept of “terroir”: definition and research direction

On exposera la distinction et la relation entre: “Etude des milieux”, “Zonage Petit ou Zonage Technique ou Sub Zonage”, “Grand Zonage”, “Délimitation des zones productives” ex.