“Terroir” and climate change in Franconia / Germany

Abstract

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.
Franconia is a landscape of contrasts with various climatic conditions. The vineyard sites are located at a height between 120 m and 420 m above sea level on slopes and steep slopes as well as on terraces.
In favourable south orientated sites the maximum temperatures reach about 40° C (peak value year 2003), while winter frosts cause deep temperatures down to about -27°C (year 2002) in valleys or exposed sites.
At present, the Franconian winegrowing region is being affected by the global climate change. Several forecasts predict an average annual temperature increase of approximately 2°C for Southern Germany until the year 2050. During the same period an increased occurrence of temperature-related extreme events is expected.
In case of permanent increase of the average air temperatures and temperature-related extreme events, the cultivation of grapes on E, W and NW slopes could be considered appropriate to preserve the fruity character of traditional white wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ulrike Maaß, Arnold Schwab

Bavarian State Institute for Viticulture and Horticulture An der Steige 15, D-97209 Veitshöchheim

Contact the author

Keywords

Vineyard Climate, Climate change, Terroir, Topoclimate, Microclimate

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Reconfiguring wine prescription : from traditional critics to digital social networks

The integration of digital social networks (DSN) has profoundly transformed communication practices within the wine industry, reorganizing the dynamics of prescription and marketing.

Ecophysiological characterisation of terroir effects on Vitis vinifera L. Chardonnay and pinot noir in south african cool climate regions

Terroir encompasses environmental (climate, geology, soil and topography), genetic (cultivar and clone) and human factors (oenological and viticultural practices). Climate change brings about shifts in the suitability of a region for the growth of specific grapevine cultivars. This study focused on climatic and fruit parameters (berry size, weight, pH, total acidity (TA) and phenolics) to characterise the terroir effect in Vitis vinifera L. cultivars Chardonnay and Pinot Noir vineyards in the Cape South Coast region (Walker Bay and Elgin).

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.