“Terroir” and climate change in Franconia / Germany

Abstract

Franconia which is a “cool climate” winegrowing region is well known for its fruity white wines. The most common grape cultivars are Silvaner and Mueller-Thurgau.
Franconia is a landscape of contrasts with various climatic conditions. The vineyard sites are located at a height between 120 m and 420 m above sea level on slopes and steep slopes as well as on terraces.
In favourable south orientated sites the maximum temperatures reach about 40° C (peak value year 2003), while winter frosts cause deep temperatures down to about -27°C (year 2002) in valleys or exposed sites.
At present, the Franconian winegrowing region is being affected by the global climate change. Several forecasts predict an average annual temperature increase of approximately 2°C for Southern Germany until the year 2050. During the same period an increased occurrence of temperature-related extreme events is expected.
In case of permanent increase of the average air temperatures and temperature-related extreme events, the cultivation of grapes on E, W and NW slopes could be considered appropriate to preserve the fruity character of traditional white wines.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

Ulrike Maaß, Arnold Schwab

Bavarian State Institute for Viticulture and Horticulture An der Steige 15, D-97209 Veitshöchheim

Contact the author

Keywords

Vineyard Climate, Climate change, Terroir, Topoclimate, Microclimate

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Cork and Wine: interactions and newly formed compounds

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine.

An exploration of South Tyrolean Pinot blanc wines and their quality potential in vineyard sites across a range of altitudes

Aim: Pinot Blanc is the third most planted white wine grape in northern Italy’s region of South Tyrol, where small-scale viticultural production permits the examination of the wine’s diverse expressive potential in a small area across a wide range of climatic variables. This study aimed to explore the qualitative potential of Pinot Blanc across a range of climatic variation leading to site-specific terroir expression in a cool climate region.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Unveiling the Grapevine Red Blotch Virus (GRBV) host-pathogen arms-race via multi-omics for enhanced viral defense 

The Grapevine Red Blotch Virus (GRBV) poses a critical challenge to the wine sector, lacking a uniquely identified vector. Current control methods involve costly and labor-intensive vine removal, emphasizing the urgency for targeted alternatives. The limited understanding of intricate host-virus interactions underscores the need for foundational knowledge to develop innovative disease control strategies. These include efforts to boost the plant’s RNA interference (RNAi) response, including RNA-based topical applications.

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas.