Importanza del monitoraggio micro-meteorologico nella caratterizzazione del terroir

Abstract

[English version below]

Le variabili meteorologiche e micro-meteorologiche ricoprono un importante ruolo sulla risposta vegeto-produttiva della vite e di conseguenza sulla qualità delle produzioni. Utilizzando una rete wireless di sensori sono stati monitorati i parametri meteorologici e micro-meteorologici di 4 vigneti del territorio toscano e in differenti condizioni di gestione agronomica. La comparazione di Land Indicators (indici calcolati a partire dal dato meteo territoriale proveniente da una stazione meteo tradizionale situata al di fuori del vigneto) e Proximity Indicator (indici calcolati dal dato meteo prossimale rilevato all’interno del vigneto) fa emergere come le due scale di indagine offrano una caratterizzazione del terroir significativamente diversa, in particolare per quanto concerne il ciclo giornaliero della temperatura del grappolo. Lo studio dell’impatto delle diverse pratiche di gestione della chioma sul micro-clima, ha evidenziato differenze tra le tesi defogliate e non, soprattutto nei valori di temperature massime e radiazione misurate a livello del grappolo. Questo studio evidenzia come il monitoraggio micro-meteorologico sia uno strumento efficace per ottenere delle sotto-zonazioni dei vigneti soprattutto in territori caratterizzati da morfologia eterogenea e quindi da grande variabilità spaziale dei parametri ambientali.

The micro-meteorological and meteorological variables play an important role on the vegetative-productive response of the grapevine and consequently on quality products. Using a wireless sensor network, meteorological and micro-meteorological parameters of four Tuscany vineyards have been monitored and in different conditions of agronomic management. The comparison of Land Indicators (territorial data from a traditional weather station located outside the vineyard) and Proximity Indicators (proximal data monitored inside the vineyard) highlighted large differences especially with regard to the diurnal course of bunch temperature. The impact of different management practices on canopy microclimate pointed out significative differences between defoliated and non-thesis, especially in maximum temperature and solar radiation at bunch level. Present study emphasize the role of micro-meteorological monitoring in providing a reliable picture of vineyard sub-zones that can be useful in those areas characterized by an heterogeneous morphology and hence by a large spatial variability of environmental parameters.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Matese (1), F. Di Gennaro (2), L. Genesio (1) , F. P. Vaccari (1), F. Sabatini (1), M. Pieri (2)

(1) Consiglio Nazionale delle Ricerche, Istituto of Biometeorologia (CNR-IBIMET) Via G. Caproni, 8 50145 Firenze (Italia)
(2) Società Consortile Tuscania S.r.l. – Piazza Strozzi, 1 50100 Firenze (Italia)

Contact the author

Keywords

Parametri micro-meteorologici, gestione della chioma, indicatori territoriali e prossimali
Micro-meteorological parameters, canopy management, Land and Proximity indicators

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Determination of titratable acidity, sugar and organic acid content in red and white wine grape cultivars during ripening by VIS–NIR hy¬perspectral imaging

Grape harvest time is one of the most fundamental aspects that affect grape quality and thus wine quality. Many factors influence the decision of harvest; among them technological and phenolic maturity of grape. Technological ripeness is mainly related to sugar concentration, titratable acidity and pH. Conventional methods for chemical analysis of grapes are normally sample-destructive, time-consuming, include laborious sample preparation steps, and generate chemical waste, thereby limiting their utility in online/in-line quality monitoring. Moreover, destructive analyses can be performed only on a limited number of fruit pieces and, thus, their statistical relevance could be limited. This study evaluated the ability of a lab-scale hyperspectral imaging (HYP-IM) technique to predict titratable acidity, organic acid and sugar content of grapes. Samples of Cabernet franc and Chenin blanc grapes were consecutively collected six times at weekly intervals after veraison. The images were recorded thanks to the hyperspectral imaging camera Pica L (Resonon) in a spectral range from 400 to 1000 nm. Statistics were performed using Microsoft Xlstat software. Successively, the berries were analyzed for their sugar (glucose and fructose) and organic acid (malic and tartaric acid) content and titratable acidity according to usual methods.

WineMetrics: A new approach to unveil the “wine-like aroma” chemical feature

“The Human being has an excellent ability to detect and discriminate odors but typically has great difficulty in identifying specific odorants”(1). Furthermore, “from a cognitive point of view the mechanism used to judge wines is closer to pattern recognition than descriptive analysis.” Therefore, when one wants to reveal the volatile “wine-like feature” pattern recognition techniques are required. Sensomics is one of the most recent “omics”, i.e. a holistic perspective of a complex system, which deals with the description of substances originated from microorganism metabolism that are “active” to human senses (2). Depicting the relevant volatile fraction in wines has been an ongoing task in recent decades to which several research groups have allocated important resources. The most common strategy has been the “target approach” in order to identify the “key odorants” for a given wine varietal.

Know thy enemy: oxygen or storage temperature?

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable

Zonage et caractérisation des terroirs de l’AOC Côtes-du-Rhône: exemple du bassin de Nyons-Valreas

The southern Côtes-du-Rhône vineyard shows a significant variety of ecological facets over the Lower Rhone Valley. Intending to characterize such a variety of “terroir “called vineyard situations, a spatial approach based on identification of soil landscapes has been initiated.

Swiss terroirs studies

A multidisciplinary approach aiming at studying the grape-growing areas also referred as “Terroir” was initiated a few years ago in Switzerland.