Importanza del monitoraggio micro-meteorologico nella caratterizzazione del terroir

Abstract

[English version below]

Le variabili meteorologiche e micro-meteorologiche ricoprono un importante ruolo sulla risposta vegeto-produttiva della vite e di conseguenza sulla qualità delle produzioni. Utilizzando una rete wireless di sensori sono stati monitorati i parametri meteorologici e micro-meteorologici di 4 vigneti del territorio toscano e in differenti condizioni di gestione agronomica. La comparazione di Land Indicators (indici calcolati a partire dal dato meteo territoriale proveniente da una stazione meteo tradizionale situata al di fuori del vigneto) e Proximity Indicator (indici calcolati dal dato meteo prossimale rilevato all’interno del vigneto) fa emergere come le due scale di indagine offrano una caratterizzazione del terroir significativamente diversa, in particolare per quanto concerne il ciclo giornaliero della temperatura del grappolo. Lo studio dell’impatto delle diverse pratiche di gestione della chioma sul micro-clima, ha evidenziato differenze tra le tesi defogliate e non, soprattutto nei valori di temperature massime e radiazione misurate a livello del grappolo. Questo studio evidenzia come il monitoraggio micro-meteorologico sia uno strumento efficace per ottenere delle sotto-zonazioni dei vigneti soprattutto in territori caratterizzati da morfologia eterogenea e quindi da grande variabilità spaziale dei parametri ambientali.

The micro-meteorological and meteorological variables play an important role on the vegetative-productive response of the grapevine and consequently on quality products. Using a wireless sensor network, meteorological and micro-meteorological parameters of four Tuscany vineyards have been monitored and in different conditions of agronomic management. The comparison of Land Indicators (territorial data from a traditional weather station located outside the vineyard) and Proximity Indicators (proximal data monitored inside the vineyard) highlighted large differences especially with regard to the diurnal course of bunch temperature. The impact of different management practices on canopy microclimate pointed out significative differences between defoliated and non-thesis, especially in maximum temperature and solar radiation at bunch level. Present study emphasize the role of micro-meteorological monitoring in providing a reliable picture of vineyard sub-zones that can be useful in those areas characterized by an heterogeneous morphology and hence by a large spatial variability of environmental parameters.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. Matese (1), F. Di Gennaro (2), L. Genesio (1) , F. P. Vaccari (1), F. Sabatini (1), M. Pieri (2)

(1) Consiglio Nazionale delle Ricerche, Istituto of Biometeorologia (CNR-IBIMET) Via G. Caproni, 8 50145 Firenze (Italia)
(2) Società Consortile Tuscania S.r.l. – Piazza Strozzi, 1 50100 Firenze (Italia)

Contact the author

Keywords

Parametri micro-meteorologici, gestione della chioma, indicatori territoriali e prossimali
Micro-meteorological parameters, canopy management, Land and Proximity indicators

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Investigating the role of endophytes in enhancing grapevine resilience to drought

Grapevine is a crop of great economic importance for several countries. The intensification of grapevine production has mostly been sustained by the increasing use of water resources at the expense of the environmental water balance. Moreover, in the last decades, climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile both ecologically and economically. Recently, many research groups have highlighted the important role of endophytes in facilitating plant growth under optimal or stressful conditions. Within the framework of the PRIMA project, we aim to investigate the possible exploitation of the natural endophyte biodiversity as a sustainable tool to make grapevine plants more resilient to water deficit environmental conditions.

Study of grape-ripening process variability using mid infrared spectroscopy

To obtain a quality wine, it is necessary to collect grapes in an optimal state of maturation, so the control of the ripening process is fundamental for the viticulturist.

Implementation of a deep learning-based approach for detecting and localising automatically grapevine leaves with downy mildew symptoms

Grapevine downy mildew is a disease of foliage caused by Oomycete Plasmopara viticola an endoparasite that develops inside grapevine organs and can infect virtually every green organ. Downy mildew is one of the most destructive diseases in wine-growing regions, drastically reducing yield and fruit quality. Traditional manual disease detection relies on farm experts. Human field scouting has been widely used for monitoring the disease progress, however, is costly, laborious, subjective, and often imprecise.

The true cost of the vineyard landscape enhancement. First results in the Venezia biodistrict 

The research is part of the “Ecovinegoals” project, financed by Interreg Adrion funds. It aims to encourage the adoption and dissemination of agroecological practices in intensive wine-growing areas. The study focuses on cost analysis of the wine-growing landscape enhancement in an organic winery in order to provide a useful tool for winemakers to direct their investments in green infrastructures. One of the Italian pilot areas of the Ecovinegoals project is the Venezia Biodistrict, characterized by viticulture in a flat reclamation area of 105,800 hectares.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.