Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Climatic influences on Mencía grapevine phenology and grape composition for Amandi (Ribeira Sacra, Spain)

Climatic influences on Mencía grapevine phenology and grape composition for Amandi (Ribeira Sacra, Spain)

Abstract

During the year 2009 we have studied the phenology and grape composition of Mencía cultivar in seven different situations (orientation and altitude) for Amandi subzone (D.O. Ribeira Sacra, Spain). The results showed the influence of terroir on the Mencía growth stages (budburst, floraison, veraison, and harvest). All phenological data indicate that there is a delay in budburst for V-2 of 15 days respect to V-5 and V-6. A delay for floraison also was found for V-2 and V-3 (8 days respect to the others vineyards). In the veraison the delay was for V-1 and V-2 (3 days) respect to other vineyards studied. Significant differences were found in grape composition: total acidity, pH, malic acid, color intensity and anthocyanins. The volatiles also were influenced by the terroir, showed higher concentration of free compounds for V-2 (416 and SW) than the others vineyards and the total bound composition shower the highest values for V-4.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

I. Rodríguez (1), J. Queijeiro (1), A. Masa (2), and M. Vilanova (2)

(1) Sciences Faculty of Ourense, Edificio Politécnico, As Lagos s/n 32004, Ourense (Spain)
(2) Misión Biológica de Galicia-CSIC. PO BOX 28, Pontevedra (Spain)

Contact the author

Keywords

Mencía, Phenology, Amandi, Spain

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Simulating the impact of climate change on grapevine behaviour and viticultural activities

Global climate change affects regional climates and hold implications for wine growing regions worldwide

Synergistic effect of fumaric acid and chitosan on the inhibition of malolactic fermentation

During wine storage and aging, microorganisms capable of degrading malic acid in an undesirable manner can proliferate.

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).