Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Abstract

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties. The goal of this multi-year project is to study the relationship between vineyard soils and the wines produced on them using a variety of biogeochemical and mineral analyses, coupled with an analysis of vine properties and juice characteristics. This study examines leaf and petiole nutrient levels, as well as fruit and juice characteristics, of own-rooted Cabernet Sauvignon vines grown on four distinct soil types in the same Paso Robles vineyard. The soils were classified as Palexeralfs, Haploxeralfs, Haploxerolls and Haploxererts. The four soils exhibited important morphological differences in color, coarse fragment content, texture, water holding capacity, and hydraulic conductivity. The soils also showed important differences in chemical characteristics and nutrient availability. The soils covered contiguous vineyard patches planted with the same cultivar, on its own roots. The vineyard was irrigated and fertilized. Mesoclimatic conditions and slope aspect were similar. Soils were analyzed for physical and chemical differences to determine the influence of the four contrasting soil types on differences in vine growth, water stress and plant nutrient levels. Differences in cation exchange capacity and cationic balance in the soil solution appeared to affect nutrient availability to the vines, and likely contributed to the observed differences in the plant and fruit characteristics. Berries harvested on the four blocks exhibited different sensory attributes, as determined by a tasting panel. In an analysis of data from three consecutive growing seasons, many of the observed differences in plant vigor between vineyard blocks were consistent from year to year, as were differences in fruit yield and juice properties. Taken together, these findings support a role for soil texture, water and nutrient availability on vine and fruit parameters, and emphasize that differences in soil properties within a single vineyard may require site-specific management practices.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.-J. Lambert (1), J. Fujita (1), C. Gruenwald (1), R.A. Dahlgren (2), H. Heymann (1), J.A. Wolpert (1,3)

(1) Department of Viticulture and Enology
(2) Department of Land, Air and Water Resources, UC Davis
(3) UC Cooperative Extension, University of California at Davis, One Shields Avenue, Davis CA 95616 USA

Contact the author

Keywords

Soil, Biogeochemistry, Nutrients, Leaf, Petiole, Management

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.

Understanding provenance and terroir in Australian Pinot noir

Aims: This study aimed to (1) characterise colour and phenolic profiles of commercial Australian Pinot noir wines, (2) understand regional drivers of sensory and volatile profiles of commercial Australian Pinot noir wines, and (3) generate a deeper understanding of where Australian Pinot noir wines profiles sit in an international context.

New genomic techniques, plant variety rights and wine law

The paper discusses potential implications of New Genomic Technologies (NGTs) on European Plant Variety and Wine Law.

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy

Grapevine abiotic stress induce tolerance to bunch rot

Context. Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid climate viticulture.