Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Abstract

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties. The goal of this multi-year project is to study the relationship between vineyard soils and the wines produced on them using a variety of biogeochemical and mineral analyses, coupled with an analysis of vine properties and juice characteristics. This study examines leaf and petiole nutrient levels, as well as fruit and juice characteristics, of own-rooted Cabernet Sauvignon vines grown on four distinct soil types in the same Paso Robles vineyard. The soils were classified as Palexeralfs, Haploxeralfs, Haploxerolls and Haploxererts. The four soils exhibited important morphological differences in color, coarse fragment content, texture, water holding capacity, and hydraulic conductivity. The soils also showed important differences in chemical characteristics and nutrient availability. The soils covered contiguous vineyard patches planted with the same cultivar, on its own roots. The vineyard was irrigated and fertilized. Mesoclimatic conditions and slope aspect were similar. Soils were analyzed for physical and chemical differences to determine the influence of the four contrasting soil types on differences in vine growth, water stress and plant nutrient levels. Differences in cation exchange capacity and cationic balance in the soil solution appeared to affect nutrient availability to the vines, and likely contributed to the observed differences in the plant and fruit characteristics. Berries harvested on the four blocks exhibited different sensory attributes, as determined by a tasting panel. In an analysis of data from three consecutive growing seasons, many of the observed differences in plant vigor between vineyard blocks were consistent from year to year, as were differences in fruit yield and juice properties. Taken together, these findings support a role for soil texture, water and nutrient availability on vine and fruit parameters, and emphasize that differences in soil properties within a single vineyard may require site-specific management practices.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.-J. Lambert (1), J. Fujita (1), C. Gruenwald (1), R.A. Dahlgren (2), H. Heymann (1), J.A. Wolpert (1,3)

(1) Department of Viticulture and Enology
(2) Department of Land, Air and Water Resources, UC Davis
(3) UC Cooperative Extension, University of California at Davis, One Shields Avenue, Davis CA 95616 USA

Contact the author

Keywords

Soil, Biogeochemistry, Nutrients, Leaf, Petiole, Management

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Exploring the prevalence of esca-induced leaf symptoms in French vineyards and the role of climate: a national scale analysis

Esca, a severe trunk disease affecting vineyards, is caused by fungal pathogens that induce wood necrosis and decay, leaf symptoms, yield losses, and potentially a rapid death of the vine. The prevalence of this disease varies across years, regions, cultivars, and plot ages. Despite its significance in understanding and predicting dieback risk in different vineyards, the role of climate in trunk diseases remains a relatively unexplored research area. While some studies have demonstrated the impact of certain climatic conditions on the prevalence of the disease, they often focus on a limited number of plots and yield conflicting results.We conducted a statistical analysis, using a Bayesian approach on a national database comprising prevalence data of esca from over 500 different plots in France, spanning the years 2003 to 2022 and encompassing various cultivars.

Importance of the Terror Variability Map (TVM) in Precision viticulture (PV): choice of methodology for soil classification

The Precision Viticulture (PV) is defined “as a management system that is information and technology based, is site specific and uses one or more of the following sources of data: soils, vigour, nutrients, pests, moisture, and yield among others, for optimum profitability, sustainability, and protection of the environment” (OIV, 2018, in process). The elements mentioned in the definition are an important part of the terroir components. The terroir is a tool In Viticulture, it is the analysis and study unit, and the variability of a certain situation can be due to any difference in every element or property of each factor that constitutes it, including the management.The soil and its management are those that bring the most variability to terroir.

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

Second pruning as a strategy to delay maturation in cv. ‘Touriga nacional’ in the Portuguese Douro region

The advance in maturation of wine grapes is an important climate change risk related effect that could affect warm regions like Portuguese Douro Wine Region. Indeed, the climate analysis over the past years registered a decrease in the precipitation, significant higher average temperatures, and a more frequent occurrence of extreme weather events, including heat waves. In these conditions the length from anthesis until maturation is shortened and the uncoupling of technical and phenolic maturity results in berries with higher sugar concentration (and lower acidity), but lower anthocyanins, tannins, and total phenolic concentration, which produce unbalanced wines.
In this work, an innovative strategy of crop forcing, based on forcing vine regrowth after a second pruning of green shoots, was tested, aimed at delaying ripening until the temperature becomes lower and, therefore, preventing acidity loss and increasing anthocyanin-to-sugar ratio. The experiments were conducted in 2019 and 2020 in a commercial vineyard of ‘Touriga Nacional’ located in the Douro Region. Crop forcing was conducted 15 (CF1) to 30 (CF2) days after fruit set. Vines pruned with conventional methods were used as control (CF0). Results confirmed that fruit ripening was shifted from the hot season (August/September), until a cooler period (October through early-November). At harvest, grapevine berries from CF1 and CF2 presented lower pH and higher acidity, than control, with no significant differences in colour intensity and phenolic levels composition. Sugar content was lower in CF2-treated vines in both seasons. However, in CF-treated vines the number and size of clusters were significantly lower (up to 88% reduction) than in control plants. A metabolomics analysis of mature berries from CF-treated vines and control is underway. Crop forcing was indeed effective in producing a more balance berry composition but severely reduced grapevine yield,

Under-vine cover crops in viticulture: impact of different weed management practices on weed suppression, yield and quality of grapevine cultivar Riesling

The regulation of weeds, particularly in the under-vine area of grapevines, is essential for the maintenance of grape yield and quality.