Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Abstract

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties. The goal of this multi-year project is to study the relationship between vineyard soils and the wines produced on them using a variety of biogeochemical and mineral analyses, coupled with an analysis of vine properties and juice characteristics. This study examines leaf and petiole nutrient levels, as well as fruit and juice characteristics, of own-rooted Cabernet Sauvignon vines grown on four distinct soil types in the same Paso Robles vineyard. The soils were classified as Palexeralfs, Haploxeralfs, Haploxerolls and Haploxererts. The four soils exhibited important morphological differences in color, coarse fragment content, texture, water holding capacity, and hydraulic conductivity. The soils also showed important differences in chemical characteristics and nutrient availability. The soils covered contiguous vineyard patches planted with the same cultivar, on its own roots. The vineyard was irrigated and fertilized. Mesoclimatic conditions and slope aspect were similar. Soils were analyzed for physical and chemical differences to determine the influence of the four contrasting soil types on differences in vine growth, water stress and plant nutrient levels. Differences in cation exchange capacity and cationic balance in the soil solution appeared to affect nutrient availability to the vines, and likely contributed to the observed differences in the plant and fruit characteristics. Berries harvested on the four blocks exhibited different sensory attributes, as determined by a tasting panel. In an analysis of data from three consecutive growing seasons, many of the observed differences in plant vigor between vineyard blocks were consistent from year to year, as were differences in fruit yield and juice properties. Taken together, these findings support a role for soil texture, water and nutrient availability on vine and fruit parameters, and emphasize that differences in soil properties within a single vineyard may require site-specific management practices.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.-J. Lambert (1), J. Fujita (1), C. Gruenwald (1), R.A. Dahlgren (2), H. Heymann (1), J.A. Wolpert (1,3)

(1) Department of Viticulture and Enology
(2) Department of Land, Air and Water Resources, UC Davis
(3) UC Cooperative Extension, University of California at Davis, One Shields Avenue, Davis CA 95616 USA

Contact the author

Keywords

Soil, Biogeochemistry, Nutrients, Leaf, Petiole, Management

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Paysages viticoles et terroir dans l’OAC Ribeira Sacra (Galice, NO de l’Espagne)

The concept of Appellation d’Origine Contrôlée (AOC) is based on the existence of a link between the characteristics of the terroir and the quality and typicality of the production (DELAS, 2000). If for a long time, this link only appeared as the fruit of empiricism, the research undertaken recently has made it possible to scientifically establish the complex relationships between the functioning of natural environments and the ability to produce quality.

137Cs analysis by gamma spectrometry and its potential for dating Portuguese old wines

Analytical methods for dating wines often rely on assessing anthropogenic and cosmogenic radionuclides, including 14C and 137Cs [1,2].

Composition and biological potential of grape and wine phenolic compounds

Polyphenols are common in human diets, primarily in plant-derived food and beverages. They influence multiple sensory properties such as aroma, flavour, colour, and taste, such as astringency and bitterness [1]. The major phenolic compounds in grapes and wines are anthocyanins and tannins (proanthocyanidins or condensed tannins).

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

Phenolic composition of Xinomavro (vitis vinifera L.cv.) grapes from different regions of Greece

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...