Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Abstract

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties. The goal of this multi-year project is to study the relationship between vineyard soils and the wines produced on them using a variety of biogeochemical and mineral analyses, coupled with an analysis of vine properties and juice characteristics. This study examines leaf and petiole nutrient levels, as well as fruit and juice characteristics, of own-rooted Cabernet Sauvignon vines grown on four distinct soil types in the same Paso Robles vineyard. The soils were classified as Palexeralfs, Haploxeralfs, Haploxerolls and Haploxererts. The four soils exhibited important morphological differences in color, coarse fragment content, texture, water holding capacity, and hydraulic conductivity. The soils also showed important differences in chemical characteristics and nutrient availability. The soils covered contiguous vineyard patches planted with the same cultivar, on its own roots. The vineyard was irrigated and fertilized. Mesoclimatic conditions and slope aspect were similar. Soils were analyzed for physical and chemical differences to determine the influence of the four contrasting soil types on differences in vine growth, water stress and plant nutrient levels. Differences in cation exchange capacity and cationic balance in the soil solution appeared to affect nutrient availability to the vines, and likely contributed to the observed differences in the plant and fruit characteristics. Berries harvested on the four blocks exhibited different sensory attributes, as determined by a tasting panel. In an analysis of data from three consecutive growing seasons, many of the observed differences in plant vigor between vineyard blocks were consistent from year to year, as were differences in fruit yield and juice properties. Taken together, these findings support a role for soil texture, water and nutrient availability on vine and fruit parameters, and emphasize that differences in soil properties within a single vineyard may require site-specific management practices.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J.-J. Lambert (1), J. Fujita (1), C. Gruenwald (1), R.A. Dahlgren (2), H. Heymann (1), J.A. Wolpert (1,3)

(1) Department of Viticulture and Enology
(2) Department of Land, Air and Water Resources, UC Davis
(3) UC Cooperative Extension, University of California at Davis, One Shields Avenue, Davis CA 95616 USA

Contact the author

Keywords

Soil, Biogeochemistry, Nutrients, Leaf, Petiole, Management

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

The evaluation of tannin activity in south african red wines

Astringency is an important red wine quality attribute, which can be measured both chemically and sensorially. The use of tannin activity shows potential as a valuable chemical measurement in understanding red wine mouthfeel properties such as astringency and bitterness, which is also affected by tannin structural factors, in addition to matrix effects. Tannin activity is defined as the enthalpy of interaction between tannins and a hydrophobic surface. Studies involving tannin activity have been performed since the early 2010’s, but chemosensory studies used to evaluate how structure-activity relationships change across multiple, consecutive vintages are limited. The aim of this study is to investigate how tannin activity may be linked to red wine mouthfeel, and how all these variables may change according to wine age.

Observation and modeling of climate at fine scales in wine-producing areas

Global change in climate affect regional climates and hold implications for viticulture worldwide. Despite numerous studies on the impact of projected global warming on different regions

Contrast of unfair trade practices in business-to-business relationships in the agricultural and food supply chain: An overview from the vitivinicultural perspective

According to the Directive EU 2019/633, European Union settled a minimum harmonised framework of rules to ensure the prohibitions of unfair commercial practices in business to business relationship of agrifood sector.

Remote sensing and ground techniques, applied to the characterization of a new viticultural region at Pinto Bandeira, Brazil

The region of viticultural production near Pinto Bandeira, Brazil, is being studied to define typical characteristics of wines locally produced.

Isolation, biofilm formation and control of the wine spoilage yeast Brettanomyces bruxellensis

Brettanomyces bruxellensis, commonly referred to as “Brett,” is one of the most notorious microorganisms implicated in wine spoilage. This yeast species has developed a noteworthy resistance to sulfur dioxide, a widely used preservative in winemaking, prompting the wine industry to seek new antimicrobial agents.